【DeepSeek 从入门到精通】DeepSeek 实现核心原理之: GRPO 算法

paper: https://arxiv.org/pdf/2402.03300

目录

算法定义

核心思想

与PPO的区别

策略更新

价值评估

约束条件

适用场景

目标函数

优势函数计算

KL散度约束

查询选择

响应生成

优势计算

策略更新

模型架构

训练流程

性能提升

训练效率

推理能力

泛化性能


算法定义

在大语言模型(LLM)的强化学习微调阶段,Group Relative Policy Optimization (GRPO)算法作为一种创新方法崭露头角。GRPO是一种在线学习算法,其核心思想是通过评估一组响应之间的相对关系来优化模型,而不是依赖外部评估者。这种方法显著提高了训练效率,特别适用于需要复杂问题解决和长链思维的推理任务。

GRPO算法的主要特点包括:

  1. 组抽样 :对于给定状态,使

内容概要:文章详细探讨了数据连接性和云集成在增强汽车电子电气架构(EEA)方面的重要作用。首先介绍了从分布式到集中式架构的技术演进,解释了域集中式和中央集中式架构的优势,如远程软件升级(OTA)、软硬件解耦等。其次,阐述了云平台在远程软件更新、数据存储与分析等方面的支持作用。接着,强调了数据连接性在实时通信、低延迟决策、多模态传感器融合以及工业物联网集成中的核心作用。此外,讨论了云集成在个性化服务、AI助手、自动驾驶训练与仿真、预测性维护等方面的应用。最后,分析了市场需求与政策支持对这一领域的影响,并展望了未来的发展趋势,如5G-A/6G、边缘计算与AI大模型的融合。 适用人群:汽车电子工程师、智能网联汽车行业从业者及相关领域的研究者。 使用场景及目标:①理解汽车电子电气架构从分布式到集中式的演进过程及其带来的优势;②掌握数据连接性和云集成在提升车辆智能化水平的具体应用和技术细节;③了解相关政策法规对智能网联汽车发展的支持与规范;④探索未来技术发展趋势及其可能带来的变革。 其他说明:本文不仅提供了技术层面的深入解析,还结合了实际应用案例,如特斯拉、蔚来、中联重科、约翰迪尔等企业的实践成果,有助于读者全面理解数据连接性和云集成在现代汽车工业中的重要地位。同时,文中提及的政策法规也为行业发展指明了方向。
### DeepSeek入门精通教程 #### 获取资源途径 对于希望深入学习DeepSeek的人来说,存在多种渠道可以获得所需的学习资料。通过网盘链接可以直接访问《DeepSeek入门精通指导手册》,这是一份详尽的手册,涵盖了从基础概念理解至高级应用实践的内容[^1]。 #### 关注官方账号获取最新资讯 除了在线文档外,还可以通过关注特定的微信公众号来获得最新的学习材料和技术支持。例如,“Python技术极客”提供了名为《DeepSeek 15天指导手册 - 从入门精通》的新手教程下载服务,只需发送关键词“DeepSeek”,就能轻松取得这份宝贵的参考资料[^2]。 #### 掌握核心技能 为了更好地利用DeepSeek解决实际问题,了解其背后的技术原理至关重要。特别是关于如何在有限的数据集条件下提升模型表现这一点,《DeepSeek入门精通:全面掌握AI大模型的核心能力》一文中提到,该平台采用了先进的强化学习算法优化了多个领域内的任务处理效率,如数学计算、编程以及自然语言处理等方面的工作流程[^3]。 #### 利用学术资源深化理解 针对那些渴望更深层次探索DeepSeek特性的学者们来说,来自清华大学的研究小组编制了一份长达104页的教学幻灯片(PDF),它不仅适合初学者逐步建立基础知识体系,同时也为有经验用户提供了一条通往更高层次使用的路径[^4]。 ```python # 示例代码展示如何加载并初始化一个简单的DeepSeek实例 from deepseek import create_model model = create_model() print(model.summary()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值