MCP Python SDK

MCP Python SDK

Python implementation of the Model Context Protocol (MCP)

Table of Contents

Overview

The Model Context Protocol allows applications to provide context for LLMs in a standardized way, separating the concerns of providing context from the actual LLM interaction. This Python SDK implements the full MCP specification, making it easy to:

  • Build MCP clients that can connect to any MCP server
  • Create MCP servers that expose resources, prompts and tools
  • Use standard transports like stdio and SSE
  • Handle all MCP protocol messages and lifecycle events

Installation

Adding MCP to your python project

We recommend using uv to manage your Python projects. In a uv managed python project, add mcp to dependencies by:

uv add "mcp[cli]"

Alternatively, for projects using pip for dependencies:

pip install mcp

Running the standalone MCP development tools

To run the mcp command with uv:

uv run mcp

Quickstart

Let’s create a simple MCP server that exposes a calculator tool and some data:

# server.py
from mcp.server.fastmcp import FastMCP

# Create an MCP server
mcp = FastMCP("Demo")


# Add an addition tool
@mcp.tool()
def add(a: int, b: int) -> int:
    """Add two numbers"""
    return a + b


# Add a dynamic greeting resource
@mcp.resource("greeting://{name}")
def get_greeting(name: str) -> str:
    """Get a personalized greeting"""
    return f"Hello, {name}!"

You can install this server in Claude Desktop and interact with it right away by running:

mcp install server.py

Alternatively, you can test it with the MCP Inspector:

mcp dev server.py

What is MCP?

The Model Context Protocol (MCP) lets you build servers that expose data and functionality to LLM applications in a secure, standardized way. Think of it like a web API, but specifically designed for LLM interactions. MCP servers can:

  • Expose data through Resources (think of these sort of like GET endpoints; they are used to load information into the LLM’s context)
  • Provide functionality through Tools (sort of like POST endpoints; they are used to execute code or otherwise produce a side effect)
  • Define interaction patterns through Prompts (reusable templates for LLM interactions)
  • And more!

Core Concepts

Server

The FastMCP server is your core interface to the MCP protocol. It handles connection management, protocol compliance, and message routing:

# Add lifespan support for startup/shutdown with strong typing
from contextlib import asynccontextmanager
from collections.abc import AsyncIterator
from dataclasses import dataclass

from fake_database import Database  # Replace with your actual DB type

from mcp.server.fastmcp import Context, FastMCP

# Create a named server
mcp = FastMCP("My App")

# Specify dependencies for deployment and development
mcp = FastMCP("My App", dependencies=["pandas", "numpy"])


@dataclass
class AppContext:
    db: Database


@asynccontextmanager
async def app_lifespan(server: FastMCP) -> AsyncIterator[AppContext]:
    """Manage application lifecycle with type-safe context"""
    # Initialize on startup
    db = await Database.connect()
    try:
        yield AppContext(db=db)
    finally:
        # Cleanup on shutdown
        await db.disconnect()


# Pass lifespan to server
mcp = FastMCP("My App", lifespan=app_lifespan)


# Access type-safe lifespan context in tools
@mcp.tool()
def query_db(ctx: Context) -> str:
    """Tool that uses initialized resources"""
    db = ctx.request_context.lifespan_context["db"]
    return db.query()

Resources

Resources are how you expose data to LLMs. They’re similar to GET endpoints in a REST API - they provide data but shouldn’t perform significant computation or have side effects:

from mcp.server.fastmcp import FastMCP

mcp = FastMCP("My App")


@mcp.resource("config://app")
def get_config() -> str:
    """Static configuration data"""
    return "App configuration here"


@mcp.resource("users://{user_id}/profile")
def get_user_profile(user_id: str) -> str:
    """Dynamic user data"""
    return f"Profile data for user {user_id}"

Tools

Tools let LLMs take actions through your server. Unlike resources, tools are expected to perform computation and have side effects:

import httpx
from mcp.server.fastmcp import FastMCP

mcp = FastMCP("My App")


@mcp.tool()
def calculate_bmi(weight_kg: float, height_m: float) -> float:
    """Calculate BMI given weight in kg and height in meters"""
    return weight_kg / (height_m**2)


@mcp.tool()
async def fetch_weather(city: str) -> str:
    """Fetch current weather for a city"""
    async with httpx.AsyncClient() as client:
        response = await client.get(f"https://api.weather.com/{city}")
        return response.text

Prompts

Prompts are reusable templates that help LLMs interact with your server effectively:

from mcp.server.fastmcp import FastMCP
from mcp.server.fastmcp.prompts import base

mcp = FastMCP("My App")


@mcp.prompt()
def review_code(code: str) -> str:
    return f"Please review this code:\n\n{code}"


@mcp.prompt()
def debug_error(error: str) -> list[base.Message]:
    return [
        base.UserMessage("I'm seeing this error:"),
        base.UserMessage(error),
        base.AssistantMessage("I'll help debug that. What have you tried so far?"),
    ]

Images

FastMCP provides an Image class that automatically handles image data:

from mcp.server.fastmcp import FastMCP, Image
from PIL import Image as PILImage

mcp = FastMCP("My App")


@mcp.tool()
def create_thumbnail(image_path: str) -> Image:
    """Create a thumbnail from an image"""
    img = PILImage.open(image_path)
    img.thumbnail((100, 100))
    return Image(data=img.tobytes(), format="png")

Context

The Context object gives your tools and resources access to MCP capabilities:

from mcp.server.fastmcp import FastMCP, Context

mcp = FastMCP("My App")


@mcp.tool()
async def long_task(files: list[str], ctx: Context) -> str:
    """Process multiple files with progress tracking"""
    for i, file in enumerate(files):
        ctx.info(f"Processing {file}")
        await ctx.report_progress(i, len(files))
        data, mime_type = await ctx.read_resource(f"file://{file}")
    return "Processing complete"

Running Your Server

Development Mode

The fastest way to test and debug your server is with the MCP Inspector:

mcp dev server.py

# Add dependencies
mcp dev server.py --with pandas --with numpy

# Mount local code
mcp dev server.py --with-editable .

Claude Desktop Integration

Once your server is ready, install it in Claude Desktop:

mcp install server.py

# Custom name
mcp install server.py --name "My Analytics Server"

# Environment variables
mcp install server.py -v API_KEY=abc123 -v DB_URL=postgres://...
mcp install server.py -f .env

Direct Execution

For advanced scenarios like custom deployments:

from mcp.server.fastmcp import FastMCP

mcp = FastMCP("My App")

if __name__ == "__main__":
    mcp.run()

Run it with:

python server.py
# or
mcp run server.py

Mounting to an Existing ASGI Server

You can mount the SSE server to an existing ASGI server using the sse_app method. This allows you to integrate the SSE server with other ASGI applications.

from starlette.applications import Starlette
from starlette.routing import Mount, Host
from mcp.server.fastmcp import FastMCP


mcp = FastMCP("My App")

# Mount the SSE server to the existing ASGI server
app = Starlette(
    routes=[
        Mount('/', app=mcp.sse_app()),
    ]
)

# or dynamically mount as host
app.router.routes.append(Host('mcp.acme.corp', app=mcp.sse_app()))

For more information on mounting applications in Starlette, see the Starlette documentation.

Examples

Echo Server

A simple server demonstrating resources, tools, and prompts:

from mcp.server.fastmcp import FastMCP

mcp = FastMCP("Echo")


@mcp.resource("echo://{message}")
def echo_resource(message: str) -> str:
    """Echo a message as a resource"""
    return f"Resource echo: {message}"


@mcp.tool()
def echo_tool(message: str) -> str:
    """Echo a message as a tool"""
    return f"Tool echo: {message}"


@mcp.prompt()
def echo_prompt(message: str) -> str:
    """Create an echo prompt"""
    return f"Please process this message: {message}"

SQLite Explorer

A more complex example showing database integration:

import sqlite3

from mcp.server.fastmcp import FastMCP

mcp = FastMCP("SQLite Explorer")


@mcp.resource("schema://main")
def get_schema() -> str:
    """Provide the database schema as a resource"""
    conn = sqlite3.connect("database.db")
    schema = conn.execute("SELECT sql FROM sqlite_master WHERE type='table'").fetchall()
    return "\n".join(sql[0] for sql in schema if sql[0])


@mcp.tool()
def query_data(sql: str) -> str:
    """Execute SQL queries safely"""
    conn = sqlite3.connect("database.db")
    try:
        result = conn.execute(sql).fetchall()
        return "\n".join(str(row) for row in result)
    except Exception as e:
        return f"Error: {str(e)}"

Advanced Usage

Low-Level Server

For more control, you can use the low-level server implementation directly. This gives you full access to the protocol and allows you to customize every aspect of your server, including lifecycle management through the lifespan API:

from contextlib import asynccontextmanager
from collections.abc import AsyncIterator

from fake_database import Database  # Replace with your actual DB type

from mcp.server import Server


@asynccontextmanager
async def server_lifespan(server: Server) -> AsyncIterator[dict]:
    """Manage server startup and shutdown lifecycle."""
    # Initialize resources on startup
    db = await Database.connect()
    try:
        yield {"db": db}
    finally:
        # Clean up on shutdown
        await db.disconnect()


# Pass lifespan to server
server = Server("example-server", lifespan=server_lifespan)


# Access lifespan context in handlers
@server.call_tool()
async def query_db(name: str, arguments: dict) -> list:
    ctx = server.request_context
    db = ctx.lifespan_context["db"]
    return await db.query(arguments["query"])

The lifespan API provides:

  • A way to initialize resources when the server starts and clean them up when it stops
  • Access to initialized resources through the request context in handlers
  • Type-safe context passing between lifespan and request handlers
import mcp.server.stdio
import mcp.types as types
from mcp.server.lowlevel import NotificationOptions, Server
from mcp.server.models import InitializationOptions

# Create a server instance
server = Server("example-server")


@server.list_prompts()
async def handle_list_prompts() -> list[types.Prompt]:
    return [
        types.Prompt(
            name="example-prompt",
            description="An example prompt template",
            arguments=[
                types.PromptArgument(
                    name="arg1", description="Example argument", required=True
                )
            ],
        )
    ]


@server.get_prompt()
async def handle_get_prompt(
    name: str, arguments: dict[str, str] | None
) -> types.GetPromptResult:
    if name != "example-prompt":
        raise ValueError(f"Unknown prompt: {name}")

    return types.GetPromptResult(
        description="Example prompt",
        messages=[
            types.PromptMessage(
                role="user",
                content=types.TextContent(type="text", text="Example prompt text"),
            )
        ],
    )


async def run():
    async with mcp.server.stdio.stdio_server() as (read_stream, write_stream):
        await server.run(
            read_stream,
            write_stream,
            InitializationOptions(
                server_name="example",
                server_version="0.1.0",
                capabilities=server.get_capabilities(
                    notification_options=NotificationOptions(),
                    experimental_capabilities={},
                ),
            ),
        )


if __name__ == "__main__":
    import asyncio

    asyncio.run(run())

Writing MCP Clients

The SDK provides a high-level client interface for connecting to MCP servers:

from mcp import ClientSession, StdioServerParameters, types
from mcp.client.stdio import stdio_client

# Create server parameters for stdio connection
server_params = StdioServerParameters(
    command="python",  # Executable
    args=["example_server.py"],  # Optional command line arguments
    env=None,  # Optional environment variables
)


# Optional: create a sampling callback
async def handle_sampling_message(
    message: types.CreateMessageRequestParams,
) -> types.CreateMessageResult:
    return types.CreateMessageResult(
        role="assistant",
        content=types.TextContent(
            type="text",
            text="Hello, world! from model",
        ),
        model="gpt-3.5-turbo",
        stopReason="endTurn",
    )


async def run():
    async with stdio_client(server_params) as (read, write):
        async with ClientSession(
            read, write, sampling_callback=handle_sampling_message
        ) as session:
            # Initialize the connection
            await session.initialize()

            # List available prompts
            prompts = await session.list_prompts()

            # Get a prompt
            prompt = await session.get_prompt(
                "example-prompt", arguments={"arg1": "value"}
            )

            # List available resources
            resources = await session.list_resources()

            # List available tools
            tools = await session.list_tools()

            # Read a resource
            content, mime_type = await session.read_resource("file://some/path")

            # Call a tool
            result = await session.call_tool("tool-name", arguments={"arg1": "value"})


if __name__ == "__main__":
    import asyncio

    asyncio.run(run())

MCP Primitives

The MCP protocol defines three core primitives that servers can implement:

PrimitiveControlDescriptionExample Use
PromptsUser-controlledInteractive templates invoked by user choiceSlash commands, menu options
ResourcesApplication-controlledContextual data managed by the client applicationFile contents, API responses
ToolsModel-controlledFunctions exposed to the LLM to take actionsAPI calls, data updates

Server Capabilities

MCP servers declare capabilities during initialization:

CapabilityFeature FlagDescription
promptslistChangedPrompt template management
resourcessubscribe
listChanged
Resource exposure and updates
toolslistChangedTool discovery and execution
logging-Server logging configuration
completion-Argument completion suggestions

Documentation

Contributing

We are passionate about supporting contributors of all levels of experience and would love to see you get involved in the project. See the contributing guide to get started.

License

This project is licensed under the MIT License - see the LICENSE file for details.

<think>好的,我需要帮助用户查找Python SDK的安装路径或配置方法。首先,用户提到的Python SDK可能是指MCP Python SDK,这在引用[1]中提到过。根据引用[1],安装方法是通过pip install mcp。一般来说,用pip安装的包默认路径在Python的site-packages目录下。 接下来,我需要考虑不同操作系统下的路径差异。例如,在Linux或macOS上,路径可能是/usr/local/lib/pythonX.Y/site-packages/,其中X.Y是Python版本。而在Windows上,可能是在C:\PythonXY\Lib\site-packages\或者用户目录下的AppData\Local\Programs\Python\PythonXY\Lib\site-packages\。 另外,用户可能需要验证安装是否正确,可以通过pip show mcp来查看安装路径。此外,配置方法可能涉及环境变量设置,比如将SDK的路径添加到PYTHONPATH中,或者在代码中指定路径。 还要注意引用[3]提到的证书问题,虽然和安装路径无关,但可能影响SDK的运行,特别是如果SDK需要用到HTTPS或其他安全连接的话。用户需要确保Python版本符合要求,比如Python 2.7.4或更高,并且使用OpenSSL证书。 总结步骤:1. 使用pip安装;2. 通过pip show查找路径;3. 配置环境变量或代码中的路径。同时,注意Python版本和证书配置。</think>### Python SDK安装路径及配置方法 #### 1. 安装Python SDK 根据引用[1],若需安装**MCP Python SDK**,可通过以下命令完成: ```bash pip install mcp ``` #### 2. 查找安装路径 Python包的默认安装路径取决于操作系统和Python环境: - **Linux/macOS**: ```bash /usr/local/lib/pythonX.Y/site-packages/ # 系统级Python ~/.local/lib/pythonX.Y/site-packages/ # 用户级Python(使用--user参数安装) ``` - **Windows**: ```bash C:\PythonXY\Lib\site-packages\ # 默认Python安装路径 C:\Users\<用户名>\AppData\Local\Programs\Python\PythonXY\Lib\site-packages\ # 用户目录下 ``` **验证方法**: ```bash pip show mcp # 输出中包含"Location"字段即为安装路径 ``` #### 3. 配置方法 - **环境变量配置**: 若需将SDK路径添加到`PYTHONPATH`中: ```bash export PYTHONPATH="/path/to/sdk:$PYTHONPATH" # Linux/macOS set PYTHONPATH=C:\path\to\sdk;%PYTHONPATH% # Windows ``` - **代码中动态添加路径**: ```python import sys sys.path.append("/path/to/sdk") ``` #### 4. 注意事项 - **Python版本要求**:根据引用[3],部分SDK可能要求Python 2.7.4或更高版本。 - **证书配置**:若SDK涉及网络通信,建议使用OpenSSL生成的证书(而非.pfx文件)以避免兼容性问题[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值