Python大数据预处理:Pandas与NumPy高效实战
关键词:Pandas, NumPy, 数据预处理, 向量化操作, 缺失值处理, 特征工程, 大数据实战
摘要:在大数据时代,数据预处理是数据分析、机器学习的关键前置步骤。本文深度解析Pandas与NumPy这两大Python数据处理核心库的协同工作机制,结合原理讲解、代码实战与数学模型,系统覆盖数据清洗、转换、特征工程等核心场景。通过电商用户行为数据实战案例,演示从数据加载到标准化输出的全流程,揭示向量化操作、内存优化等高效技巧,并总结未来大数据预处理的发展趋势与挑战。
1. 背景介绍
1.1 目的和范围
数据预处理在数据科学工作流中占据60%-80%的时间成本,直接影响后续建模效果。本文聚焦结构化数据预处理,以Pandas(表格数据处理)和NumPy(数值计算)为核心工具,覆盖以下核心场景:
- 数据清洗(缺失值、异常值处理)
- 数据转换(标准化、离散化、特征编码)
- 特征工程(时间特征提取、聚合计算)
- 高效操作(向量化运算、内存优化)
1.2 预期读者
- 数据分析师:需掌握高效处理百万级数据的技巧
- 机器学习工程师:需理