OpenCV多相机标定——实现多机器人视觉系统的标定
随着机器人视觉技术的不断发展,越来越多的应用场景需要使用多个摄像头进行标定,以实现更高效、更准确的数据采集和处理。在这种情况下,多相机标定是必不可少的步骤,它能够解决多相机之间位置、姿态等方面的差异,为后续的物体检测、跟踪和定位提供可靠的基础。
本文将详细介绍如何使用OpenCV实现多机器人视觉系统的标定,包括相机参数标定、图像坐标系转换和基于棋盘格的标定方法等。
一、相机参数标定
相机参数标定是多相机标定的关键步骤之一,它通过求解相机内参矩阵和畸变系数来确定每个相机的几何特征。常用的标定板类型有棋盘格、圆点板、椭圆板等。本文以棋盘格为例进行讲解。
1.1 准备标定板
首先需要准备一张标定板,通过OpenCV提供的函数drawChessboardCorners()
生成一个10×7的棋盘格,并将其打印出来。然后在标定过程中将该标定板放置在不同相机位置,并拍摄多组照片。
1.2 提取角点
对于每组照片,需要用函数findChessboardCorners()
提取标定板角点坐标,并判断是否提取成功。如果成功则将角点坐标存入一个二维向量数组中。
1.3 标定相机
将所获得的所有角点坐标传入函数calibrateCamera()
进行相机参数标定。该函数会返回相机内参矩阵和畸变系数,可以通过cv::Fi