OpenCV多相机标定——实现多机器人视觉系统的标定

159 篇文章 17 订阅 ¥29.90 ¥99.00
本文详述了使用OpenCV进行多相机标定的过程,涵盖相机参数标定、图像坐标系转换,重点是基于棋盘格的标定方法,以实现多机器人视觉系统的精确标定。
摘要由CSDN通过智能技术生成

OpenCV多相机标定——实现多机器人视觉系统的标定

随着机器人视觉技术的不断发展,越来越多的应用场景需要使用多个摄像头进行标定,以实现更高效、更准确的数据采集和处理。在这种情况下,多相机标定是必不可少的步骤,它能够解决多相机之间位置、姿态等方面的差异,为后续的物体检测、跟踪和定位提供可靠的基础。

本文将详细介绍如何使用OpenCV实现多机器人视觉系统的标定,包括相机参数标定、图像坐标系转换和基于棋盘格的标定方法等。

一、相机参数标定

相机参数标定是多相机标定的关键步骤之一,它通过求解相机内参矩阵和畸变系数来确定每个相机的几何特征。常用的标定板类型有棋盘格、圆点板、椭圆板等。本文以棋盘格为例进行讲解。

1.1 准备标定板

首先需要准备一张标定板,通过OpenCV提供的函数drawChessboardCorners()生成一个10×7的棋盘格,并将其打印出来。然后在标定过程中将该标定板放置在不同相机位置,并拍摄多组照片。

1.2 提取角点

对于每组照片,需要用函数findChessboardCorners()提取标定板角点坐标,并判断是否提取成功。如果成功则将角点坐标存入一个二维向量数组中。

1.3 标定相机

将所获得的所有角点坐标传入函数calibrateCamera()进行相机参数标定。该函数会返回相机内参矩阵和畸变系数,可以通过cv::Fi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值