强化学习下的赛道自动驾驶

本文探讨了强化学习在自动驾驶中的应用,通过DQN和PPO算法进行赛道自动驾驶的模拟。网络配置中,1D卷积层处理激光雷达数据,结合车辆状态信息进行决策。奖励设定包括基础圈速奖励和检查点奖励,以促进学习。经过训练,车辆能在圆环赛道稳定行驶,但存在左右摇摆问题,需要改进探索机制以提升性能。
摘要由CSDN通过智能技术生成

如今自动驾驶系统已经非常成熟,神经网络已经可以在大多数工况下,根据激光雷达以及普通摄像头输出可靠的油门及转向决定。不过,这不代表这种分类式神经网络的自动驾驶是十全十美的。这类算法的局限之一在于,它始终无法突破或改进训练数据所展示的性能,同时也无法对环境相比训练时产生的偏移的各种改变做出真正意义上的响应。相比之下,强化学习在注重性能或适应性的场合有不小的潜力。在这篇博客里,我记录一次使用强化学习,利用激光雷达进行模拟赛道自动驾驶的探索。

算法介绍

DQN

Deep Q-Network 之核心是奖励估测神经网络 Q : S → A × R Q: S\rightarrow A\times R Q:SA×R,其输入为当前状态 s ∈ S s\in S sS,输出为 ∪ i { ( a i , v i ) } \cup _{i}\{(a_i, v_i)\} i{ (ai,vi)},即对于每个可能使用的动作赋予一个预期奖励值v。v即为网络预测执行该动作后至该训练周期结束,agent获得奖励之和。v默认接下来的所有决策也按照算法进行:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值