sk-learn学习之svm(1)

svm是很强大的分类器,可以用于监督学习,半监督/无监督学习中,在工业界和学术界都有广泛的应用。

1. svm一个简单的二分类例子

https://scikit-learn.org/stable/modules/svm.html#svm-classification

#二分类
from sklearn import svm
X = [[0, 0], [1, 1]] # [n_samples, n_features]
y = [0, 1]  #  class labels
clf = svm.SVC(gamma='scale')
clf.fit(X, y) 
print(clf.predict([[2., 2.]])) # 1

print(clf.predict([[-1., -1.]]))  # 0

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值