[NAND Flash] 3.1 闪存的组成结构原理与使用挑战

24 篇文章 2 订阅 ¥49.90 ¥99.00

依公知及经验整理,原创保护,禁止转载。

专栏 《深入理解NAND Flash

<<<< 返回总目录 <<<<


前言
日本东芝最初发明半导体存储芯片时,认为它就像拍照时的闪光一样迅速,因此命名为闪存(Flash)。如今,我们使用的最常见的形式是NOR闪存和NAND闪存。根据不同的场景,我们使用不同的存储器。 NOR闪存通常用于嵌入式系统,而手机内部存储、PC硬盘和USB快闪等则使用NAND闪存。这些设备中存储的数据通常被读取的次数比写入的次数多,但写入的频率仍然相对较高,因此NAND闪存是更常见的选择。

1 Flash 物理结构

1.1 Flash 是什么?

Flash是一种非易失性存储设备。与易失性存储设备相对应,Flash Memory所存储的数据即使断电也不会丢失。除了Flash,其他常见的非易失性存储设备包括磁盘和光盘等。易失性存储设备就像其名字一样,一旦断电数据就会丢失。常见的易失性存储设备包括内存条,如DDR5等。

最小存储单元
闪存的最小存储单元是“晶体管-栅极-漏极”(Transistor-Gate-Drain,TGD)结构。在这种结构中,栅极上的电子可以控制漏极和源极之间的电荷通量,从而实现存储和读取数据。​​

  • 22
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
协同过滤算法(Collaborative Filtering)是一种经典的推荐算法,其基本原理是“协同大家的反馈、评价和意见,一起对海量的信息进行过滤,从中筛选出用户可能感兴趣的信息”。它主要依赖于用户和物品之间的行为关系进行推荐。 协同过滤算法主要分为两类: 基于物品的协同过滤算法:给用户推荐与他之前喜欢的物品相似的物品。 基于用户的协同过滤算法:给用户推荐与他兴趣相似的用户喜欢的物品。 协同过滤算法的优点包括: 无需事先对商品或用户进行分类或标注,适用于各种类型的数据。 算法简单易懂,容易实现和部署。 推荐结果准确性较高,能够为用户提供个性化的推荐服务。 然而,协同过滤算法也在一些缺点: 对数据量和数据质量要求较高,需要大量的历史数据和较高的数据质量。 容易受到“冷启动”问题的影响,即对新用户或新商品的推荐效果较差。 在“同质化”问题,即推荐结果容易出现重复或相似的情况。 协同过滤算法在多个场景中有广泛的应用,如电商推荐系统、社交网络推荐和视频推荐系统等。在这些场景中,协同过滤算法可以根据用户的历史行为数据,推荐与用户兴趣相似的商品、用户或内容,从而提高用户的购买转化率、活跃度和社交体验。 未来,协同过滤算法的发展方向可能是结合其他推荐算法形成混合推荐系统,以充分发挥各算法的优势。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

元存储

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值