作者:WiseAgent 小而美智能体架构师
一、我第一次真正“做智能体”,是从一场幻觉开始的
说实话,我第一次做智能体项目的时候,内心是有一点兴奋过头的。作为一个写了 20 年代码的老开发者,我见过太多技术浪潮,但 Agent 这波,是真的不一样。那时我脑子里只有一个画面:
多个智能体分工协作,自动规划任务,自己调用工具,自动写代码,自动部署,一个人指挥一群“数字员工”。
可现实是——我连第一个能连续跑 10 轮不崩的 Demo 都搞了快一周。不是模型不行,也不是代码太差。是我踩进了一个老程序员最容易掉进去的坑:把“智能体”当成一个升级版 ChatBot 去做。
二、第一个大坑:把 Agent 当“函数”,而不是“进程”
刚开始时,我用的是最直觉式的架构:
用户输入 → LLM → 输出结果
然后我开始往上堆:
-
加 Memory
-
加 Tool
-
加 Plan
-
加 Role 扮演
表面看起来越来越“智能”,但一跑起来就开始各种问题:
-
循环调用
-
逻辑漂移
-
假装完成任务但实际什么都没做
后来我才意识到,我错把智能体当成了“更聪明的函数”。实际它更像是一个:有状态的进程 + 行为约束系统 + 可中断执行单元。一旦你还用同步函数的思维去设计 Agent,必崩。

三、第二个大坑:我高估了“多智能体协作”的成熟度
说实话,我最开始是冲着 Multi-Agent 去的。多智能体实在太酷了,我以为多智能体会是这样:
-
一个负责规划
-
一个负责执行
-
一个负责校验
-
一个负责总结
结果现实是:
-
它们会互相“认同错误结论”
-
会编造虚假执行记录
-
甚至会陷入互相安慰型对话
更严重的是:你无法判断——到底谁开始“跑偏”了。我后来才明白一句话:多智能体不是“协作系统”,本质上是“博弈系统”。这一刻我开始思考:“控制权”比“智能”更重要。
四、第三个大坑:记忆机制是最容易被神话的模块
很多教程会告诉你:给 Agent 加上向量数据库,它就有长期记忆了。但我真实写完后的体验是:
-
记忆不是越多越好
-
记忆不是越久越强
-
记忆如果没有“衰减机制”,会严重误导决策
我见过最离谱的 Bug:模型从 100 条旧任务里面,提取出一个错误假设,然后作为“长期世界认知”来执行新任务。你以为它在学习。其实它带着偏见越走越远。

五、第四个大坑:我以为“能跑起来”很简单
坦白讲,智能体项目最难的一步,不是设计,而是:让它“稳定地跑完一个完整任务”。这背后有很多隐形成本:
-
超时重试机制
-
异常状态恢复
-
工具失败 fallback
-
调用链路日志
那段时间我对智能体的认知从:“好酷” → “好累” → “好可怕” → “好真实”。直到我第一次看到一个 Agent 在无人干预的情况下:
✅ 完成任务
✅ 遇错重试
✅ 自动修正路径
✅ 输出结构化结果
那一刻我才明白:真正的门槛,不是模型,而是工程耐心。
六、真正拯救我的不是框架,而是认知转变
后来我尝试了很多框架:AutoGen、CrewAI、LangGraph、Google ADK。但真正让我突破瓶颈的,不是框架升级。而是我改变了三个认知:
-
智能体不是“智能”,而是“结构”
-
成功的 Agent 本质是“被约束的执行器”
-
真正的价值来自“失败路径的设计”
我开始主动为失败设计分支,开始构建 chaos 测试,开始模拟异常世界而不是完美流程
那一刻,我真正从“玩模型的人”变成了“做系统的人”。

七、给新手的建议
如果你现在也想从 0 到 1 做智能体,我给你的建议是:别追求炫技功能,别迷恋多智能体,别一开始就做“全自动”。你先做到三件事:一个任务能稳定跑完 10 次,每一步都能被日志追踪,出错后系统不会崩盘。如果做到了,恭喜你,你已经超过 80% 的人了。
结尾:为什么我还要 All in Agent?
因为我越来越清晰地看到:这不是一个“模型升级”的时代,是一个结构设计者重新上桌的时代。智能体不会替代你,但会把“系统型人才”的价值放大十倍。而我现在做的事:不是教你玩 AI,是教你指挥一群 AI 干活。
640

被折叠的 条评论
为什么被折叠?



