一、所有“失控”的多智能体,第一天就已经写错了
我见过太多人是这样做多智能体系统的:
一个 Planner
一个 Executor
一个 Reviewer
一个 Summarizer
然后让他们开始“自由交流”。看起来像一个团队,实际上更像一个精神病院。我们这代做了二十年工程的人,一眼就能看出来问题在哪:边界不存在,权力不清晰,责任不可追溯。多智能体从来不是“协作系统”,它本质上是一个:高速运行的博弈系统 + 异步失控风险放大器。绝大多数“发疯”的智能体系统,不是模型的问题,是一开始从架构层就错了。

二、我踩过最深的坑:让智能体拥有“自由意志”
早期我干过最蠢的一件事是:为了追求“智能感”,我刻意减少约束,比如:
-
不限制输出长度
-
不限制工具调用次数
-
不设计重入锁
-
不设计终止条件
结果智能体不断“自我强化错误判断”,形成逻辑闭环。就像一个人在房间里对着回声讲话,越听越笃定。那一刻我意识到一个残酷事实:不受约束的智能体,不是聪明,是危险。
三、真正稳定的多智能体系统,靠的不是“协作”,而是“博弈约束”
后来我彻底改变了设计方式。我不再相信“合作”,我开始引入“冲突机制”。
✅ 所有智能体的结论必须接受反向质疑
✅ Planner 不允许直接下结论
✅ Executor 必须暴露执行中间态
✅ Reviewer 有一票否决权
我强制它们进入“互相牵制”的状态,而不是互相认同。这套结构带来的变化非常明显:
-
幻觉显著减少
-
逻辑错误下降
-
输出质量更稳定
不是因为它们变聪明了,是因为它们被系统性地限制住了。

四、记忆系统是最大的隐性炸弹
很多人不知道:失控的真正引爆点,往往不在推理层,而在“记忆层”。
我早期给智能体接了一个向量数据库做长期记忆。本意是让它“越来越懂业务”,结果是:
-
错误经验被反复强化
-
旧逻辑支配新任务
-
模型开始“固执”
后来我总结了一条血的教训:智能体的记忆,默认应该是不可信的。我增加了三层机制:
-
时间衰减权重
-
任务相关性过滤
-
记忆可信度评分
这样,多智能体系统才不会“被自己过去拖死”。
五、核心架构原则
经历了太多深刻的教训后,我现在设计多智能体系统,遵循 5 个基本原则:
-
任何智能体都不能拥有完全闭环权限
-
所有决策必须有外部可追溯日志
-
执行权和评价权必须分离
-
必须存在“终止优先级”机制
-
系统宁可失败,也不能无限自转
这 5 条,其实都是以前大型软件系统几十年的老经验,换到了 AI 时代依旧成立。
六、多智能体不该像“人”,而应该像“流程引擎”
早期我也陷入过一个误区:想把智能体设计得越来越像“真人团队”。后来发现,这是一个很危险的方向。因为人类团队有很多缓冲机制:
-
情绪
-
误解
-
妥协
-
直觉
但智能体没有。所以我现在的设计理念只有一句话:高级智能体 不等于 拟人化系统 高级智能体 是一个 结构化流程机器。你越把它当人,它就越容易疯。相反你把它当引擎,它反而越稳定。
七、智能体开发者的忠告

如果你想做多智能体系统,我给你一个真诚但冷血的建议:千万别从多智能体开始。先从基础开始,单 Agent 的生命周期;错误恢复链路;状态持久化;执行边界;这些搞明白后,你才有资格玩“多个 Agent”。
我第一次看到一个完美的多智能体系统:在无人干预下稳定运行 3 小时,执行 20+ 个真实任务,自动纠错、自动降级、自动恢复。我没有兴奋,只有一种感觉:这玩意儿,终于像“工程系统”了,而不是大型魔法表演。而我的目标从那一天开始转变:不再追求“聪明的智能体”,我只想打造一个:永远不发疯的系统。
835

被折叠的 条评论
为什么被折叠?



