上一节介绍了演绎定理,接下来看看用它能玩出什么新花样。
定理1.15: ⊢¬¬B⇒B
注:有点双重否定即肯定的意思。
证明:利用演绎定理,证明 ¬¬B⊢B 即可。
(1) ¬¬B ,假设
(2) ¬¬B⇒(¬B⇒¬¬B) , A1
(3) ¬B⇒¬¬B , (1)(2)和MP
(4) (¬B⇒¬¬B)⇒((¬B⇒¬B)⇒B) ,A3
(5) (¬B⇒¬B)⇒B , (3)(4)和MP
(6) ¬B⇒¬B , 定理1.7
(7) B , 由(5)(6)和MP
证毕
定理1.15反过来也是可以的,如下:
定理1.16:
证明:这次直接来,不需要演绎定理。
(1) ¬¬¬B⇒¬B , 定理1.15
(2) (¬¬