罗素悖论
罗素悖论在NBG理论下并不会产生矛盾。记 Y={
x|x∉x} Y = { x | x ∉ x } ,这个 Y Y 就称为“罗素类”。罗素悖论之所以会产生矛盾,是因为人们“自然地”认为
也是个集合。如果你用自然语言表述 Y Y ,那就会是:
是一个包含,那些不包含自身作为元素的集合,的集合。如果都是集合的话,当然就会产生 Y Y 是否属于
的矛盾。
公理化集合论对付罗素悖论的方法就是要区别, Y Y 和 不是“同一种东西”。用NBG的公理可以证明, x x 是集合,而 只是一个真类(proper class),也就是“理发师”和“那些被他理发的人”并不是“同一类人”。证明 Y Y 不是集合的方法很简单,因为 ,所以 (∀x)(x∈Y⇔x∉x) ( ∀ x ) ( x ∈ Y ⇔ x ∉ x ) ,展开写法就是 (∀X)(M(X)⇒(X∈Y⇔X∉X)) ( ∀ X ) ( M ( X ) ⇒ ( X ∈ Y ⇔ X ∉ X ) ) 。现在采用规则A4,可得 M(Y)⇒(Y∈Y⇔Y∉Y) M ( Y ) ⇒ ( Y ∈ Y ⇔ Y ∉ Y ) 。假设 M(Y) M ( Y ) ,则由MP可得 Y∈Y⇔Y∉Y Y ∈ Y ⇔ Y ∉ Y 。易证 (Y∈Y⇔Y∉Y)⇒(Y∈Y∧Y∉Y) ( Y ∈ Y ⇔ Y ∉ Y ) ⇒ ( Y ∈ Y ∧ Y ∉ Y ) (利用命题演算里的永真式),所以我们就得到 M(Y)⊢Y∈Y∧Y∉Y M ( Y ) ⊢ Y ∈ Y ∧ Y ∉ Y 。根据反证法规则,可得 ⊢¬M(Y) ⊢ ¬ M ( Y ) ,也即罗素类真的只是个类,而不是集合。
由罗素类也可以证明 V V (包含所有集合的类),也只是个类,而不是集合。证明如下:假设 ,那么根据推论4.6b, (∀x)(∀Y)(Y⊆x⇒M(Y)) ( ∀ x ) ( ∀ Y ) ( Y ⊆ x ⇒ M ( Y ) ) ,所以 Y⊆V⇒M(Y) Y ⊆ V ⇒ M ( Y ) ,这里的 Y Y 是罗素类。因为 ,所以根据A1可得 u∈Y⇒u∈V u ∈ Y ⇒ u ∈ V ,所以 Y⊆V Y ⊆ V ,这样就得到了 M(Y) M ( Y ) ,与 ¬M(Y) ¬ M ( Y ) 矛盾,所以 ⊢¬M(V) ⊢ ¬ M ( V ) 。
序数(Ordinal Number)
我们先定义集合下的某些“排序”关系。
定义4.6.1:
a. X Irr Y X I r r Y :是 Rel(X)∧(∀y)(y∈Y⇒<y,y>∉X) R e l ( X ) ∧ ( ∀ y ) ( y ∈ Y ⇒< y , y >∉ X ) 的缩写。 X X 是
中的“非自反”关系。
b. X Tr Y X T r Y :是 Rel(X)∧(∀u)(∀v)(∀w)([u∈Y∧v∈Y∧w∈Y∧<u,v>∈X∧<v,w>∈X]⇒<u,w>∈X) R e l ( X ) ∧ ( ∀ u ) ( ∀ v ) ( ∀ w ) ( [ u ∈ Y ∧ v ∈ Y ∧ w ∈ Y ∧ < u , v >∈ X ∧ < v , w >∈ X ] ⇒< u , w >∈ X ) 的缩写。 X X 是
中的“传递”关系。
c. X Part Y X P a r t Y :是 (X Irr Y)∧(X Tr Y) ( X I r r Y ) ∧ ( X T r Y ) 的缩写。 X X 是
中的“部分顺序”(partially order)。
d. X Con Y X C o n Y :是 Rel(X)∧(∀u)(∀v)([u∈Y∧v∈Y∧u≠v]⇒<u,v>∈X∨<v,u>∈X) R e l ( X ) ∧ ( ∀ u ) ( ∀ v ) ( [ u ∈ Y ∧ v ∈ Y ∧ u ≠ v ] ⇒< u , v >∈ X ∨ < v , u >∈ X ) 的缩写。 X X 是
的“连接”关系。
e. X Tot Y X T o t Y :是 (X Irr Y)∧(X Tr Y)∧(X Con Y) ( X I r r Y ) ∧ ( X T r Y ) ∧ ( X C o n Y ) 的缩写。 X X 是
的“全排序”。
f. X We Y X W e Y :是 (X Irr Y)∧(∀Z)([Z⊆Y∧Z≠∅]⇒(∃y)(y∈Z∧(∀x)(v∈Z∧v≠y⇒<y,v>∈X∧<v,y>∉X))) ( X I r r Y ) ∧ ( ∀ Z ) ( [ Z ⊆ Y ∧ Z ≠ ∅ ] ⇒ ( ∃ y ) ( y ∈ Z ∧ ( ∀ x ) ( v ∈ Z ∧ v ≠ y ⇒< y , v >∈ X ∧ < v , y >∉ X ) ) ) 的缩写。 X X 是
中的“良序关系”,它的意思是 Y Y 中任意一个非空子类,都能找出一个“最小”元素。
引理4.6.1:
a.
b. ⊢X We Y∧Z⊆Y⇒X We Z ⊢ X W e Y ∧ Z ⊆ Y ⇒ X W e Z
证明:
a. 假设 X We Y X W e Y ,先证 X Con Y X C o n Y 。通俗点讲,如果 X X 是良序关系,那么
中任意两个成员