数理逻辑4 -- 公理化集合论6

本文深入探讨了数理逻辑中的罗素悖论及其在公理化集合论中的解决方案,解释了为何在NBG理论下罗素类不引起矛盾。此外,文章还介绍了如何证明包含所有集合的类(如罗素类)并非集合。进一步,文章引入了序数的概念,定义了部分顺序、全排序和良序关系,并展示了这些概念在集合论中的应用。
摘要由CSDN通过智能技术生成

罗素悖论
罗素悖论在NBG理论下并不会产生矛盾。记 Y={ x|xx} Y = { x | x ∉ x } ,这个 Y Y 就称为“罗素类”。罗素悖论之所以会产生矛盾,是因为人们“自然地”认为 Y 也是个集合。如果你用自然语言表述 Y Y ,那就会是: Y 是一个包含,那些不包含自身作为元素的集合,的集合。如果都是集合的话,当然就会产生 Y Y 是否属于 Y 的矛盾。

公理化集合论对付罗素悖论的方法就是要区别, Y Y x 不是“同一种东西”。用NBG的公理可以证明, x x 是集合,而 Y 只是一个真类(proper class),也就是“理发师”和“那些被他理发的人”并不是“同一类人”。证明 Y Y 不是集合的方法很简单,因为 Y = { x | x x } ,所以 (x)(xYxx) ( ∀ x ) ( x ∈ Y ⇔ x ∉ x ) ,展开写法就是 (X)(M(X)(XYXX)) ( ∀ X ) ( M ( X ) ⇒ ( X ∈ Y ⇔ X ∉ X ) ) 。现在采用规则A4,可得 M(Y)(YYYY) M ( Y ) ⇒ ( Y ∈ Y ⇔ Y ∉ Y ) 。假设 M(Y) M ( Y ) ,则由MP可得 YYYY Y ∈ Y ⇔ Y ∉ Y 。易证 (YYYY)(YYYY) ( Y ∈ Y ⇔ Y ∉ Y ) ⇒ ( Y ∈ Y ∧ Y ∉ Y ) (利用命题演算里的永真式),所以我们就得到 M(Y)YYYY M ( Y ) ⊢ Y ∈ Y ∧ Y ∉ Y 。根据反证法规则,可得 ¬M(Y) ⊢ ¬ M ( Y ) ,也即罗素类真的只是个类,而不是集合。

由罗素类也可以证明 V V (包含所有集合的类),也只是个类,而不是集合。证明如下:假设 M ( V ) ,那么根据推论4.6b, (x)(Y)(YxM(Y)) ( ∀ x ) ( ∀ Y ) ( Y ⊆ x ⇒ M ( Y ) ) ,所以 YVM(Y) Y ⊆ V ⇒ M ( Y ) ,这里的 Y Y 是罗素类。因为 ( u ) ( u V ) ,所以根据A1可得 uYuV u ∈ Y ⇒ u ∈ V ,所以 YV Y ⊆ V ,这样就得到了 M(Y) M ( Y ) ,与 ¬M(Y) ¬ M ( Y ) 矛盾,所以 ¬M(V) ⊢ ¬ M ( V )

序数(Ordinal Number)
我们先定义集合下的某些“排序”关系。
定义4.6.1:
a. X Irr Y X   I r r   Y :是 Rel(X)(y)(yY<y,y>X) R e l ( X ) ∧ ( ∀ y ) ( y ∈ Y ⇒< y , y >∉ X ) 的缩写。 X X Y 中的“非自反”关系。
b. X Tr Y X   T r   Y :是 Rel(X)(u)(v)(w)([uYvYwY<u,v>X<v,w>X]<u,w>X) R e l ( X ) ∧ ( ∀ u ) ( ∀ v ) ( ∀ w ) ( [ u ∈ Y ∧ v ∈ Y ∧ w ∈ Y ∧ < u , v >∈ X ∧ < v , w >∈ X ] ⇒< u , w >∈ X ) 的缩写。 X X Y 中的“传递”关系。
c. X Part Y X   P a r t   Y :是 (X Irr Y)(X Tr Y) ( X   I r r   Y ) ∧ ( X   T r   Y ) 的缩写。 X X Y 中的“部分顺序”(partially order)。
d. X Con Y X   C o n   Y :是 Rel(X)(u)(v)([uYvYuv]<u,v>X<v,u>X) R e l ( X ) ∧ ( ∀ u ) ( ∀ v ) ( [ u ∈ Y ∧ v ∈ Y ∧ u ≠ v ] ⇒< u , v >∈ X ∨ < v , u >∈ X ) 的缩写。 X X Y 的“连接”关系。
e. X Tot Y X   T o t   Y :是 (X Irr Y)(X Tr Y)(X Con Y) ( X   I r r   Y ) ∧ ( X   T r   Y ) ∧ ( X   C o n   Y ) 的缩写。 X X Y 的“全排序”。
f. X We Y X   W e   Y :是 (X Irr Y)(Z)([ZYZ](y)(yZ(x)(vZvy<y,v>X<v,y>X))) ( X   I r r   Y ) ∧ ( ∀ Z ) ( [ Z ⊆ Y ∧ Z ≠ ∅ ] ⇒ ( ∃ y ) ( y ∈ Z ∧ ( ∀ x ) ( v ∈ Z ∧ v ≠ y ⇒< y , v >∈ X ∧ < v , y >∉ X ) ) ) 的缩写。 X X Y 中的“良序关系”,它的意思是 Y Y 中任意一个非空子类,都能找出一个“最小”元素。

引理4.6.1:
a. X   W e   Y X   T o t   Y
b. X We YZYX We Z ⊢ X   W e   Y ∧ Z ⊆ Y ⇒ X   W e   Z

证明:
a. 假设 X We Y X   W e   Y ,先证 X Con Y X   C o n   Y 。通俗点讲,如果 X X 是良序关系,那么 Y 中任意两个成员

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值