数理逻辑4 -- 公理化集合论11

上一节讨论到类的等势。等势具备等价关系的所有性质,因此我们可以依据等势把所有集合(即真类VVV中的所有元素)分成等势的类。比如uuu是一个集合,那么所有和x={u}x={u}x = \{ u \}等势的集合所组成的类可记作1c1c1_c。这样的类被称为“弗雷格 - 罗素”基数,Frege-Russell cardinal number。(弗雷格是德国哲学家、逻辑学家,他在布尔之后进一步把集合、逻辑...
摘要由CSDN通过智能技术生成

上一节讨论到类的等势。等势具备等价关系的所有性质,因此我们可以依据等势把所有集合(即真类 V V 中的所有元素)分成等势的类。比如 u 是一个集合,那么所有和 x={ u} x = { u } 等势的集合所组成的类可记作 1c 1 c 。这样的类被称为“弗雷格 - 罗素”基数,Frege-Russell cardinal number。(弗雷格是德国哲学家、逻辑学家,他在布尔之后进一步把集合、逻辑等系统进行公理化,但由于形式化不彻底,导致“朴素集合论”出现了各种悖论,罗素给出了“罗素悖论”,把结果寄给弗雷格,弗雷格惊呼:“一个人最大的悲哀莫过于在晚年发现自己做的所有工作都是无效的。”)

可以证明,除了 0c 0 c (即 { } { ∅ } ),其它弗雷格-罗素基数都是真类。
引理4.11.1
a. ¬M(1c) ⊢ ¬ M ( 1 c )
b. ¬M(2c) ⊢ ¬ M ( 2 c )

证明:
a. 构造函数 H={ x|(u)(v)(u=vuVv1cx=<u,{ v}>)} H = { x | ( ∃ u ) ( ∃ v ) ( u = v ∧ u ∈ V ∧ v ∈ 1 c ∧ x =< u , { v } > ) } (记住“类存在的一般性定理”,这是NBG集合论中用来构建函数的依据)。不难证明, H H V 1c 1 c 的一一映射函数,所以 V1c V ≅ 1 c 。由于 ¬M(V) ¬ M ( V ) ,所以 ¬M(1c) ¬ M ( 1 c ) ,否则的话,若 1c 1 c 是集合,根据替换定理, V V 也会是集合,从而产生矛盾。证毕。

b. 构造从 V 2c 2 c 的函数 H H ,满足对于任意 u V u ,有 Hu={ u,} H ′ u = { u , ∅ } ,而 Hu={ 1,2} H ′ u = { 1 , 2 } 。不难证明, H H 是从 V R(H) R ( H ) 的一一映射函数,所以 V2c V ⪯ 2 c 。因为 ¬M(V) ¬ M ( V ) ,根据引理4.10.1b的 XY¬M(X)¬M(Y) X ⪯ Y ∧ ¬ M ( X ) ⇒ ¬ M ( Y ) ,可得 ¬M(2c) ¬ M ( 2 c ) 。证毕。

在NBG集合论中,“集合的聚集体”可用“类”的概念来表示,但“真类的聚合体”就不再适合继续用类来表示了(此刻我也不知道为什么)。因此,为了间接研究弗雷格-罗素基数,我们可以采用以下方法。

定义4.10.1:
a. X+cY X + c Y :是 (X×{ })(Y×{ 1}) ( X × { ∅ } ) ∪ ( Y × { 1 } ) 的缩写

不难发现, X×{ } X × { ∅ } Y×{ 1} Y × { 1 } 互斥,所以 X+c

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值