从统计学的角度去看,时间序列就是个随机过程,因此讨论时间序列之前,先要把随机过程的基本概念讨论清楚。
随机变量与随机过程
简单地理解随机变量与随机过程是不难的,但这里要从更严谨的角度去理解。当然,这里的严谨也没到测度论那种地步。
*定义1.1(随机变量):一个随机变量 X X 是以样本空间
为定义域,以实数 R R 为值域的函数,即
,并且满足:
(a) (Ω,F,P) ( Ω , F , P ) 是一个概率空间。这里的意思是, Ω Ω 是样本空间,包含所有可能出现的实验结果, F F 是一个 σ σ -field,即满足
(a.1) ∅∈F ∅ ∈ F ,
(a.2) 若 A1,A2,...∈F A 1 , A 2 , . . . ∈ F ,则 ⋃i=1∞Ai∈F ⋃ i = 1 ∞ A i ∈ F ,
(a.3) 若 A∈F A ∈ F ,则 Ac∈F A c ∈ F ,
,接着概率 P P 是基于
的测度,即函数 P:F→[0,1] P : F → [ 0 , 1 ] ,满足
(a.4) P(Ω)=1 P ( Ω ) = 1 ,
(a.5) P(A)=1−P(Ac) P ( A ) = 1 − P ( A c ) ,
(a.6) 若 A1,A2,...∈F A 1 , A 2 , . . . ∈ F ,并且它们彼此互斥,则 P(⋃i=1∞Ai)=∑i=1∞P(Ai) P ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 ∞ P ( A i ) ;
(b) { ω∈Ω:X(ω)≤x}∈F { ω ∈ Ω : X ( ω ) ≤ x } ∈ F ,对于所有的 x∈R x ∈ R 。
注意,这些涉及到“无穷”的定义,如果非要刨根问底,就用集合论那套语言写出来即可,这里不妨写得“非严谨”点,方便直观理解。
定义1.1中的a部分是“标准”的概率定义,b部分说白了就是,要想 X X 是一个“合法”的随机变量,那这个 函数必须满足对任意 x x ,所有比 小的实数的原像(即某个 ω ω )组成的集合要是 F F 的子集。换句话说,你不能”随便”找一个 Ω→R Ω → R 的函数,然后就说这个函数是随机变量。
有了随机变量的定义,接着就可以定义随机过程。
定义1.2(随机过程):首先, T T 是一个index集合,比如非负整数集合
。然后,一个随机过程 {
Xt,t∈T} { X t , t ∈ T } 是一个随机变量的集合,这个集合与index集合 T T 可建立一一对应关系,每个随机变量
都定义在同一个概率空间下。
随机过程就是一个随即变量的集合,我们只需找个索引集 T T 与之对应。每个子集,即有限个随机变量序列 ,都对应了一个新的概率空间,它的样本空间可粗略理解成 Ωn Ω n 。
定义1.3(样本路径):序列 { Xt(ω),ω∈Ω,t∈T} { X t ( ω ) , ω ∈ Ω , t ∈ T } 称为定义在 (Ω,F,P) ( Ω , F , P ) 上的随机过程 { Xt,t∈T} { X t , t ∈ T } 的样本路径(sample-path),或者称为一次实现(realization)。
对于一个随机变量 X X ,它的分布函数(Distribution Function)表示为 。对于一个 n n 维随机变量的序列(或向量),即 ,它的分布函数表示为 FX(x)=P(X1≤x1,...,Xn≤xn), x∈Rn F X ( x ) = P ( X 1 ≤ x 1 , . . . , X n ≤ x n ) , x ∈ R n 。
*定义1.3(随机过程的分布函数):设, T={ t∈Tn:t1<t2<⋯<tn,n=1,2,...} T = { t ∈ T n : t 1 < t 2 < ⋯ < t n , n = 1 , 2 , . . . } 。那么,称集合 { Ft(⋅),t∈T} { F t ( ⋅ ) , t ∈ T } 为随机过程 { Xt,t∈T} { X t , t ∈ T } 的分布函数,并且满足