【深度学习】- 作业2: MNIST手写数字识别

文章介绍了清华大学的驭风计划,涵盖了机器学习、深度学习等课程。在机器学习部分,使用多层感知机对MNIST数据集进行手写数字识别。学生需要完成代码实现,比较Sigmoid和ReLU激活函数,以及欧式距离和交叉熵损失函数的效果,并探索不同网络结构和超参数对性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

课程链接: 清华大学驭风计划

代码仓库:Victor94-king/MachineLearning: MachineLearning basic introduction (github.com)


驭风计划是由清华大学老师教授的,其分为四门课,包括: 机器学习(张敏教授) , 深度学习(胡晓林教授), 计算机语言(刘知远教授) 以及数据结构与算法(邓俊辉教授)。本人是综合成绩第一名,除了数据结构与算法其他单科均为第一名。代码和报告均为本人自己实现,由于篇幅限制,只展示任务布置以及关键代码,如果需要报告或者代码可以私聊博主



机器学习部分授课老师为胡晓林教授,主要主要通过介绍回归模型,多层感知机,CNN,优化器,图像分割,RNN & LSTM 以及生成式模型入门深度学习


有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~



任务介绍

1 数据集简介

MNIST手写数字识别数据集是图像分类领域最常用的数据集之一,它包含60,000张训练图片,10,000张测试图片,图片中的数字均被缩放到同一尺寸且置于图像中央,图片大小为28×28。MNIST数据集中的每个样本都是一个大小为784×1的矩阵(从28×28转换得到)。MNIST数据集中的数字包括0到9共10类,如下图所示。注意,任何关于测试集的信息都不该被引入训练过程。

image.png

在本次案例中,我们将构建多层感知机来完成MNIST手写数字识别。


2 构建多层感知机

本次案例提供了若干初始代码,可基于初始代码完成案例,各文件简介如下:

(运行初始代码之前请自行安装TensorFlow 2.0及以上版本,仅用于处理数据集,禁止直接调用TensorFlow函数)

lmlp.ipynb包含了本案例的主要内容,运行文件需安装Jupyter Noterbook.

lnetwork.py定义了网络,包括其前向和后向计算。

loptimizer.py定义了随机梯度下降(SGD),用于完成反向传播和参数更新。

lsolver.py定义了训练和测试过程需要用到的函数。

lplot.py用来绘制损失函数和准确率的曲线图。

此外,在/criterion/和/layers/路径下使用模块化的思路定义了多个层,其中每个层均包含三个函数:__init__用来定义和初始化一些变量,forward和backward函数分别用来完成前向和后向计算:

lFCLayer为全连接层,输入为一组向量(必要时需要改变输入尺寸以满足要求),与权重矩阵作矩阵乘法并加上偏置项,得到输出向量: image.png.

lSigmoidLayer为sigmoid激活层,根据image.png计算输出。

lReLULayer为ReLU激活层,根据image.png计算输出。

lEuclideanLossLayer为欧式距离损失层,计算各样本误差的平方和得到: image.png

lSoftmaxCrossEntropyLossLayer可以看成是输入到如下概率分布的映射:

image.png

其中image.png是输入向量X中的第k个元素,image.png该输入被分到第k个类别的概率。由于softmax层的输出可以看成一组概率分布,我们可以计算delta似然及其对数形式,称为Cross Entropy误差函数:

image.png

其中

image.png

注意:此处的softmax损失层与案例1中有所差异,本次案例中的softmax层不包含可训练的参数,这些可训练的参数被独立成一个全连接层。


3 案例要求

完成上述文件里的‘#TODO’部分(红色标记的文件),提交全部代码及一份案例报告,要求如下:

l记录训练和测试准确率,绘制损失函数和准确率曲线图;

l比较分别使用Sigmoid和ReLU激活函数时的结果,可以从收敛情况、准确率等方面比较;

l比较分别使用欧式距离损失和交叉熵损失时的结果;

l构造具有两个隐含层的多层感知机,自行选取合适的激活函数和损失函数,与只有一个隐含层的结果相比较;

l本案例中给定的超参数可能表现不佳,请自行调整超参数尝试取得更好的结果,记录下每组超参数的结果,并作比较和分析。



4 注意事项

l提交所有代码和一份案例报告;

l注意程序的运行效率,尽量使用矩阵运算,而不是for循环;

l本案例中不允许直接使用TensorFlow, Caffe, PyTorch等深度学习框架;

l禁止任何形式的抄袭。

报告


实验结果

Relu Vs sigmoid

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PKXa6ced-1684510468896)(image/hw2/1684510379871.png)]

<br>


不同参数之间的影响

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dAXV5dxL-1684510468897)(image/hw2/1684510420623.png)]

<br>


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曼城周杰伦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值