【线性代数简明理解】3Blue1Brown

3blue1brown的线性代数视频yyds,里面动画特别容易理解,相比较课堂上学的各种线性代数的计算,这个系列的视频通过动画对线性代数涉及到的专业名词,进行了解释,比如说行列式如果为0意味着什么,初等行变换和列变换在空间中意味着什么等等,这系列视频就是便于做题,但是比做题和上课有意思并好理解一万倍的讲解视频!!!!!。并且,每个视频也就10分钟左右,根本没有很长,一点也不枯燥,强烈建议去看。由于长时间不用就忘了,所以重刷一遍,然后做个记录。视频链接:https://www.bilibili.com/video/BV1ys411472E/?p=2&spm_id_from=pageDriver&vd_source=0f179a9c80b4b2c82f4750e69790e88b

1.线性代数的本质

1.1向量的理解

向量的理解有三种方式:

  1. 物理学生视角: 决定一个向量的是它的长度和所指的方向,只要以上两个特征相同,就可以自由的移动一个向量而保持它不变。
  2. 计算机学生视角:向量是一系列数字:[255,255,0](之前的线性代数书上都是横着写,但是之后的应用上都是竖着用的,结论:竖着写)向量中每一个位置数字都有一个意义(这个地方很像深度学习中特征向量的作用)
  3. 数学生视角 :只要保证两个向量相加以及数字与向量相乘是有意义的即可。

1.2向量加法的理解:为啥是画三角形?以及数值计算为啥是对应位置相加?

线性代数中非常重要的计算:加法和数乘。

首先是 加法:加法的定义:
一般是第一个向量v的尾,链接第二个向量w的首部,为什么不是第二章图的那样呢?或者为什么不能定义成其他的样子的?

图一

在这里插入图片描述

一般的数字加法3+2就是把两个数相加,但是向量他不仅仅有大小,还有方向,那么向量加法可以理解为:做运动

先沿着向量v的方向移动一段距离,然后沿着向量w再移动一段距离,那么最终到达的位置就是图1 显示的位置。所以线性代数的加法是那么定义的。

那么问题来了?

  • 空间中向量加法的理解
  • 线性代数的课本里可都是数字,为啥要进行对应位置相加?????????????

解释如下:

举例:对于[255,255,0]这个向量与[0,255,255]相加,对于每个向量中的每个数之前说过都是有意义的(注意在这个地方第一个位置对应的红色,第二个位置对应绿色,第三个位置对应蓝色,这个位置是不可以打乱的),在这个例子里就对应的rgb三个通道,这两种颜色混合出来就得是对应位置对应相加了。

1.3向量的数乘

如下图中灰色向量,第一个图中向量前面2,第二的图中向量前面3,其实就是对原来向量的长度进行了改变,没有改变方向!!!,但是对于第3张图中向量*-1.8,则是让原来的向量变成反方向,然后长度延伸到原来的1.8倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

总结:

数乘前面的那个数字都是标量(Scalars),他的作用就是对向量进行Scaling(这里直接翻译成缩放我觉得不是很准确)

在这里插入图片描述

1.4 总结(忽然线性代数就高大上了起来,原来学这个真的不只是为了做题)

线性代数为数据分析提供了一条将大量数据列表概念化,可视化的渠道(比如[255,255,255]向量中每个数都有自己特定的意义),它让数据样式变得非常清晰,并让你大致了解特定运算的意义。

线性代数给物理学家和计算机图形程序员提供了一种语言,让他们通过计算机能处理的数字来描述并操纵空间(之后矩阵相乘的视频,就会详细说怎么操纵空间的,这个地方强烈推荐去看视频,视频的动画太震撼了。)

2.线性组合、张成的向量空间

2.1线性组合

在二维空间中有两个特殊的向量,就是图中透明度较低的红绿两个向量(之后会讲,那是一组基向量),空间中向量[3,-2]可以看作是两个基向量i,j先分别缩放3倍和-2倍,然后相加之后所得(相加请参考上述向量相加部分内容画的那个三角形)。缩放向量并且相加这一个概念至关重要。两个数乘向量的和被称为这两个向量的线性组合。
在这里插入图片描述

2.2基向量

在2.1章节我们提到的i,j是二维向量空间的一组基向量,那么这就说明还有其他组,我们完全可以选择不同的基向量,获得一个合理的新坐标系。
比如下面这样(透明度较低的红蓝两个向量是基向量):
在这里插入图片描述
或者是表达这种向量:
在这里插入图片描述
通过改变基向量前面的标量av+bw,中的标量a和b的大小,我们就可以得到很多向量,而上图中向量就在基向量vw的坐标系中,他的坐标记作(-0.8,1.3)。值得注意的是,同一个向量在不同的基向量下(比如上文提到的ij)他的坐标是不一样的。
在这里插入图片描述
图中在这个这个坐标系中他的坐标应该表示为(3.1,-2.9),两种情况表示的变换关系完全不同(个人理解:他们分别按照不同的系数对基向量进行缩放并相加,因此也有了后面一句话)。每当我们用数字描述向量时,它都依赖于我们正在使用的基

在大部分情况下,选定一对初始的向量,就可以到达平面中每一个点。
但是也有特殊情况,
1’ 当两个初始向量恰好共线时,所产生的向量固定在了一条过原点的直线上,比如:
在这里插入图片描述
2’ 选定的两个向量都是零向量。那么组成的就是一个点,这个点是原点。

2.3向量空间

所有可以表示为给定 向量 线性组合 的向量的集合叫做给定向量张成的空间
在这里插入图片描述

对于大部分二维向量,他们张成的空间就是所有二维向量的集合
当他们共线时,他们张成的空间是终点落在一条直线上的向量的集合
在这里插入图片描述

非常重要的一句话:线性代数紧紧围绕向量加法和数乘,那么两个向量张成的空间仅通过向量加法和向量数乘这两种基础运算。

上面讨论的都是二维向量,那么三维向量就是选取三个向量u,v,w,通过他们的线性组合au+bv+cw张成向量空间。

2.3线性相关

举例:在3维空间中,假如选定的3个基向量中有两个向量是属于同一直线上的,那么他们张成的空间其实就是一个平面,并不是三维的。那么属于同一直线上的那两个向量,删掉其中一个并不会减小张成的空间。当这种情况发生的时候,我们就称他们是线性相关的
换种说法就是,其中一个向量可以表示为其他向量的线性组合,因为这个向量已经落在其他向量张成的空间之中。
另一方面,如果所有的向量都给张成的空间增添了新的维度,他们就被称为线性无关的。(正好和删除一个不会减小张成空间相对。)

2.3向量与点

假如在某个平面中向量画出来是张成这样的:
在这里插入图片描述
密密麻麻全是向量,为了让他们看上去不那么拥挤,我们通常用向量的终点代表该向量。。变成下面这样:
在这里插入图片描述
所以当你看比较少的向量的时候就看成带箭头的那个线的形式,比较多的向量的时候就看成点就可以了。

3.矩阵和线性变换

3.1线性变换是什么意思?

首先,怎么理解线性变换呢?下面从两个方面进行解释:一个是线性,一个是变换。首先说变换。

变换其实可以看作函数的另外一种说法,**它接收输入内容,并输出对应的结果。**只不过我们在线性代数里面考虑的是接收一个向量并且输出一个向量的变换。

所以有个问题:为啥函数和变换意义相同,但是还是使用前者而不是后者呢?**因为使用“变换”是在暗示以特定的方式来可视化这输入-输出的关系。“变换”这个词暗示你用运动去思考。**如果一个变量接受一个向量,并输出一个向量,我们可以理解输入向量移动到了输出向量的位置。
在这里插入图片描述
为什么称为线性呢?

1.直线在变换之后依然保持为直线,不能有所弯曲。
2.原点必须保持固定。

比如下面这个就不是线性变换,他的网格线都被弯曲了。(图中灰色的方格是原来的,蓝色的方格是变换之后的,那个白色的交叉线可以理解成平面直角坐标系里面的数轴):
在这里插入图片描述
下面这个例子是原点发生改变的:
首先图中红色点表示原点:
在这里插入图片描述
经过变换之后:
在这里插入图片描述
原点跑到了这里,这种变换,即便是直线保持了平直,但是它也不是一个线性变换。
有个更有趣的例子:
在这里插入图片描述
这个变换,在原来的灰色线的基础之上,蓝色线都是横平竖直移动的,原点也还是原点,但是他也不是线性变换,这是为啥呢?其实是因为在这个空间里我们只关注了水平和数值的直线,如果选择原来的一条对角线,那么变换之后对角线就变成扭曲的了,向下面这样:
在这里插入图片描述

所以,综上所述应该把线性变换看作是 ‘保持网格线平行且等距分布’的变换

3.2怎么描述线性变换

怎么描述线性变换其实说的就是输入经过一个什么样的函数变成了输出。
在这里插入图片描述
其实最重要的就是这个基向量,在平面直角坐标系中的下图中这俩:
在这里插入图片描述
假设现在有下图中这样的一个向量,那这个向量就可以表示成i和j的线性组合,无论经历了怎么样的线性变换。如果这个地方没有明白,请记住一句话:线性变换是保持网格平行且等距分布的,然后看下面的例子。
在这里插入图片描述
在经过线性变换之后,图中的i和j向量是变换了的,由于向量v可以用i和j的线性组合表示,所以向量v变化之后也可以直接表示出来。

这个角度的解释我个人理解是这样的:在思考一个向量经过线性变换之后是什么样的,可以等价的去理解用来表示它的基向量都经历了怎样的线性变换。

比如原来的v是-1倍的i,我们之前也学过,这个-1的意思就是把之前的i向量进行缩放,然后对j向量也进行缩放。这个向量[-1,2]的意思就是对这两个基向量缩放的倍数,那么在进行了线性变换之后的空间里,同样一个[-1,2]这个向量,他就是在新的基向量的基础上进行缩放了。
在这里插入图片描述
下面这个图里就很直观的可以看出x和y的关系了,x就是对i的缩放,同理去理解y。那么,有个这个关系,我们就可以在i和j的基础上找出[-1,2]这个向量在线性变换之后到底在新的空间里处于什么位置了。
在这里插入图片描述
通过下图中红色框的计算,就可以直接计算出来变换之后的向量具体落在哪里了。
在这里插入图片描述
上面的例子说明了,一个二维的线性变换仅有四个数字完全确定。

  • 变换后的i的两个坐标
  • 变换后的j的两个坐标

一般呢,我们都把这两个向量房子一个中括号里,他们就变成了一个2*2的矩阵。比如下面图这个样子:
在这里插入图片描述

3.3矩阵

通过上面的引入我们大概知道矩阵的样子了。那么请记住一句话**矩阵在这里只是一个记号。它含有描述一个线性变换的信息。**下面图里的矩阵,就是上面说的变化之后的基向量组成的,只不过为了更通用一些,我们将具体的数字用a,b,c,d进行了表示:
在这里插入图片描述
在有了这个含有线性变换信息的矩阵之后,我们让这个矩阵作用于一个向量(x,y)会有什么样的效果呢?在这里插入图片描述
x作用于(a,c),y作用于(b,d)。上图中的计算结果有没有很眼熟?和矩阵向量乘法真的很像。直接写成下图这样就完全是符合矩阵乘法的了。

在这里,矩阵放在向量的左边,类似一个函数:
在这里插入图片描述
所以,有意思的是,现在我们可以将矩阵的列看作是空间中的基向量,然后矩阵乘法看成这些基向量的线性组合。

有了上面的基础,通过两个例子再来加深一下理解:加入给你下图中左上角的矩阵,你能想象出来它经历线性变换之后是右下角的空间吗。
在这里插入图片描述
还有一个特殊的例子,在下图这个矩阵线性变换中,变换之后两个基向量变成了线性相关的,那么这个线性变换就将整个二维空间挤压到他们所在的一条直线上,也就是一个一维空间。
在这里插入图片描述

总结:
线性变换是操纵空间的一种手段,它保持网格线平行且等距分布,并且保持原点不动。令人高兴的是,这种变换用几个数字就能表示清楚。这些数字就是变换之后的基向量的坐标。

以这些坐标为列所构成的矩阵为我们提供了一种描述线性变换的语言。而矩阵向量乘法就是计算线性变换作用于定向量的一种途径。

所以当你每看到一个矩阵,都可以把他解读成对空间的一种特定变换。

4.矩阵乘法和线性变换复合

4.1复合变换

在空间的变换中,每种变换可以通过其他变换组合而成,比如说先逆时针转90度然后再逆时针转90度,这和逆时针转180度最后得到的结果是一样的。

举个视频中的例子,比如对一个向量先旋转然后再进行剪切(剪切运动如果不明白的,可以看下图中矩阵,按照第三章中讲得矩阵,自行画一下),如下图对应的矩阵,相当于先对(x,y)向量先左乘一个旋转矩阵,然后再在这个基础上左乘一个剪切矩阵。
在这里插入图片描述

按照矩阵乘法的运算规则,其实上面的变换就可以等价于下面的变换。
在这里插入图片描述
所以:两个矩阵相乘有几何意义,也就是两个线性变换相继作用(尤其是这个相继,记得矩阵乘法是不满足交换律的,在每次线性变换的时候我们都是通过左乘一个矩阵,所以,相继的意思是这个矩阵代表的线性变换是从右向左执行的。)

看下面图片中这个例子,M1和M2两个矩阵的线性变换向量i和j分别移动到什么位置了呢?
在这里插入图片描述
首先,经过M1,i肯定移动到了(1,1)的位置,然后要在此基础上进行M2表示的线性转换,因此向量(1,1)左乘矩阵M2才能够得到(1,1)经历M2线性变换的位置,而不是单单左乘M2矩阵的第一列。同理可以计算出j向量目前移动到什么位置。计算过程如下:
在这里插入图片描述
然后我们用通用的字母代替具体的数字:
i向量的计算:
在这里插入图片描述
j向量的计算:

在这里插入图片描述
所以,最终的结果为:
在这里插入图片描述
通过矩阵乘积表示线性变换,同样可以对矩阵乘法不满足交换律进行证明。比如先进行剪切运动和先进行旋转进行画图测试一下~

附注1-三维空间中的线性变换

之前的解说都是在平面上展开的,在平面上学习比较直观也比较容易理解。如果二维上的知识已经掌握的差不多了,就可以直接套在高维空间上。

以三维向量举例,与之前不同的是,三维空间中我们有三个通常使用的标准基向量,那么三维空间中的线性变换也可以通过基向量的变换进行计算。

考虑个简单线性变换的例子:沿y轴旋转90度,各个基向量的变化:
在这里插入图片描述
任意一个向量也可以通过基向量进行表示,只不过现在无论是基向量,还是该向量的坐标,都表示成三个数的了。在这里插入图片描述
线性变换也是一致的:
在这里插入图片描述

5.行列式

5.1行列式在二维空间中的意义

在之前的学习中,有的变换对空间进行拉伸有的变换对空间进行挤压,但是究竟被拉伸或者挤压的多少却没有测量。也就是现在可以测量一个面积缩放比例。举例:经过下面矩阵的变换,原来一个面积为1的小矩形,经过拉伸之后面积扩大了六倍(原来位于(1,1)的点,现在移动到了(3,2)的位置)
在这里插入图片描述
这个线性变换改变的面积比例,就被称为这个变换的行列式。,比如下图中矩阵行列式为3,就是说它将一个区域的面积增加为原来的3倍。
在这里插入图片描述
有种特殊情况是行列式为0,这种情况说明它将整个平面压缩到一条直线上,甚至是一个点上,因此此时所有面积都变成了0.
在这里插入图片描述
所以,只需要检验一个矩阵的行列式是否为0,就可以了解到这个矩阵所代表的变换是否将空间压缩到更小的维度上。

在完整概念下的行列式是允许出现负值的,那负数代表什么意思呢?在此之前要有一个定向的概念:

把二维空间看作是一张白纸,这种出现负数的变换像是将纸翻转到了另一面。我们称类似这样的变换改变了空间的定向。
或者这样理解:本来是这样的:
在这里插入图片描述
反转完之后变成这样的:
在这里插入图片描述
当空间定向改变的情况发生时,行列式为负,但是行列式的绝对值依然表示区域面积的缩放比例。
比如:在这里插入图片描述

5.2行列式在三维空间中的意义

行列式在三维空间中不在表示面积而是表示体积缩放比例。

同理:

  • 如果行列式为正大于零:体积体积变大了
  • 行列式为零,则被压成了一个平面,一条线,或者是一个点(我觉得这个意思就是只要维度变低,从三维变成2维1维,甚至是零维,行列是都会是0。)
  • 如果行列式为负数,那么就是方向发生了变化。具体可以参考视频或者想想高中物理的左手定理和右手定理为啥不能用一只手去做题。

思考为啥:两个矩阵的乘积的行列式,就等于两个矩阵行列式的乘积?
在这里插入图片描述

5.3行列式计算

略,详情请参考各大线性代数教材。

6.逆矩阵,列空间与零空间

整个系列旨在透过直观的线性变换来理解矩阵和向量的运算。线性代数除了在机器人和计算机图形学中有用,还可以用来解方程组。

当方程张成这样的时候:一次的,只有常量系数,未知量都写在左边,常数写在右边。
在这里插入图片描述
我们就可以把这个线性方程组写成下面这样:
在这里插入图片描述

  • A表示一个线性变换的矩阵、
  • x表示某个向量
  • v表示经过某个A变换之后的一个向量

比如下图中这个例子,这个方程的解主要是看A:

  • 如果A的行列式不为零,则依然是二维空间:在这种情况下总有一个向量在变换之后跟V重合,那这个向量就是我们唯一的解
  • 如果A的行列式为负数,那么空间发生了逆向的变换,它实际上对应了另外一个线性变换, 通常被记作"A的逆",比如原来是顺时针旋转90度,逆就是逆时针旋转90度。那么对一个向量先应用A代表的变换,再应用A逆代表的变换,那就又变回了原来的样子,两个变换相继应用还记得怎么算的吗?对,矩阵乘法。也就是说A乘以A逆会得到一个“什么都不做的矩阵”,这个什么都不做被称为恒等变换。我们可以用此来求解(同时左乘,就可以求出向量X,这也会求出一个唯一解)。在这里插入图片描述
  • 如果A的行列式为零,则空间会出现降维。上述求解就是通过求A逆,也就是找一个相反的操作。比如说先顺时针旋转90度,再做剪切,就可以通过先剪切再做逆时针的90度,变回去。但是当空间出现降维之后,我们没有办法通过已知一条直线,恢复成唯一的一个平面,但是我们可以找出无数个平面降维之后变成这个直线,所以,这种情况下有解,但是解不是唯一的。这个地方插播一条重要新闻,当变换的结果为一条直线的时候,也就是说结果是一维的时候,我们称这个变换的秩为1。同理,当变换的结果是个平面,并且是个二维的时候,这个变换的秩就为2。所以说,“秩”代表着变换后空间的维数。所以当行列式不为0的时候,空间维度不变,秩就是原来的空间的维度。
    在这里插入图片描述
    列空间:
    矩阵的列告诉你基向量变换的位置,这些变换后的基向量张成的空间就是所有可能的变换结果,换句话说:列空间就是矩阵的列所张成的空间。
    在这里插入图片描述
    零空间:简单理解就是空间压缩之后零向量的位置,对应之前未压缩的所有向量(感兴趣的可以去看动画,动画更好理解)。

未完待续。。。。。。

附注2-非方阵

7.点积与对偶性

8.1 叉积的标准介绍

8.2 以线性变换眼光看叉积

9.基变换

10.特征向量与特征值

11.抽象向量空间

12.克莱姆法则,几何解释

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值