词向量对模型performance的影响

因为自己搭建了一个4层的transformer网络,然后词向量的维度是96(attention is all you need里面transformer block的dim=512),这里设置96是为了后续我需要做一些attack的任务。

然后使用transformer4对YELP(5分类)分类的时候,performance一直在58%上下波动,尝试了各种调参发现都上不了60%。   后面都要尝试用预训练的embedding了。  但=结果调了一下embedding 96->128 。 ACC 就上升了。

词向量维度对模型的影响

  1. 表达能力

    • 词向量的维度越高,每个词可以携带更多的信息,有助于模型更好地捕捉语义关系。然而,维度过高也可能导致参数过多,增加过拟合的风险。
  2. 参数量

    • 词向量的维度增加会显著增加模型的参数量,尤其是在嵌入层和后续的线性层中。这会影响模型的训练效率和性能。
  3. 计算复杂度

    • 更高的维度会增加计算复杂度,导致训练时间增加。如果计算资源有限,可能需要平衡维度和计算资源。
  4. 训练速度

    • 维度较低的词向量训练速度更快,因为计算量较少,但可能不能充分表达复杂的语义关系。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值