点击上方“LiveVideoStack”关注我们
作者 | 邢怀飞
编辑 | Alex
策划 | Alex、包研
HDR
年终盘点
#008#
1. HDR视频技术简介
1.1 HDR技术概述
在5G+AI的大时代背景下,超高清(UHD)视频将取得更快的发展,不单是在传统的广播电视领域,而且在互联网视频、OTT领域也会有越来越多应用上线。超高清视频不仅在分辨率、帧率上有提升,更重要的是体现在高动态范围(HDR)和宽色域(WCG)上。与传统的SDR视频相比,HDR视频具有更高的亮度范围、更宽的色域范围、更深的位深(10bit/12bit)。
2020年,苹果公司宣布了iPhone 12系列手机对于HDR视频的支持,成为了HDR发展的一个重要的里程碑。苹果采用了杜比公司的Dolby Vision技术,在手机上就可以实现HDR视频内容的拍摄、录制和编辑,极大地降低了HDR视频内容创作门槛。
HDR视频的对比度更高,尤其是在一个画面里亮部和暗部对象同时存在的场景,HDR更接近人眼对于物理世界的感受。另外,HDR视频颜色更加丰富,色彩饱和度更高,更贴近于人眼看到的实际生活场景。如下图所示,与左边的SDR对比,HDR视频有更好的亮部和暗部细节。
1.2 HDR视频三要素
1.2.1 高动态范围
HDR是高动态范围(High Dynamic Ranging)的缩写,与传统的SDR相比,可以显示更大的亮度范围。举一个例子,如果我们白天用手机在室内对着窗户拍照,就会发现如果室内的场景拍摄清晰,窗户的部分就会出现过曝;反之,如果我们将窗户的部分拍摄清楚,可能室内的部分就会非常的昏暗。这种现象就是动态范围不足导致的。下图说明了人眼能够感受到的最亮和最暗的范围,以及HDR和SDR定义的亮度范围。
高动态范围这个词最早来自图像领域,多次曝光的方式被用来合成HDR的图像。最早在1997年的SIGGRAPH(由美国计算机协会计算机图形专业组组织的计算机图形学顶级年度会议)上,Paul Debevec提交了题为“从照片中恢复高动态范围辐射图”的论文,描述了按照不同的曝光设置对同一个场景进行拍照,然后将这些采用不同曝光的照片组合成高动态范围图像。这种高动态范围图像可以捕捉从黑暗的阴影到亮光源或者高反光的更大动态范围的场景。实际上iPhone或者Android智能手机拍摄HDR照片,就是采用了多次曝光后进行合成的方式,补足了亮部和暗部的细节部分,使得拍摄的图像更贴近人眼看到的效果。[1]
1.2.2 宽色域
宽色域(WCG)是HDR视频的第二个重要特性,能够表示比现行的SDR视频系统更宽的色彩范围。SDR视频采用的是BT.709的色彩空间,只能涵盖CIE 1931色彩空间的35.9%,而采用BT.2020的HDR视频占比可以达到75.8%。这样在显示器上呈现的图像与实际物理世界也会更加贴近。
1.2.3 高位深
传统的SDR视频是用8 bit位深来表示,BT.2020 标准提高到了 10 bit /12 bit,从而使灰阶过渡更加平滑,可以提升图像的细节表现,这意味着图像具有更加丰富的颜色表现。除此之外,BT.2020 在 Gamma 校正方面也进行了一定的修正。[2]
1.3 光电/电光传递函数(OETF&EOTF)
人眼对于物理世界的感知是非线性的,即对于中等亮度和暗部区间的敏感程度远高于高亮度区间,于是就有了SDR领域的Gamma曲线。我们倾向于用更多的比特数来表示中等亮度或者暗部的区域,以提高压缩率,取得更贴近人眼的效果。
在HDR时代,Gamma曲线已经不能满足最大亮度的需求。基于人眼的对比敏感度函数(Contrast Sensitivity Function,CSF),在SMPTE ST 2084标准中规定了EOTF曲线,就是感知量化(PQ)曲线。亮度范围可从最暗0.00005 nits到最亮10000 nits。PQ曲线最早是由Dolby公司开发的,并且在ST 2084中进行了标准化。
混合对数伽马(HLG)是另外一个重要的HDR传输曲线,由BBC和NHK公司开发。这个曲线与PQ曲线不同,HLG规定的是OETF曲线,因为在低亮度区域基本与Gamma曲线重合,所以提供了与SDR显示设备很好的兼容性,在广播电视系统里有