Backward Digit Sums(全排列next_permutation)

本文介绍了一个有趣的数字游戏挑战,玩家需要根据最终总和逆向推导出初始的数字序列。文章详细解释了游戏规则,并提供了一段C++代码示例,演示如何通过全排列的方法找出符合条件的数字序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        FJ and his cows enjoy playing a mental game. They write down the numbers from 1 to N (1 <= N <= 10) in a certain order and then sum adjacent numbers to produce a new list with one fewer number. They repeat this until only a single number is left. For example, one instance of the game (when N=4) might go like this:

    3   1   2   4

      4   3   6

        7   9

         16
Behind FJ's back, the cows have started playing a more difficult game, in which they try to determine the starting sequence from only the final total and the number N. Unfortunately, the game is a bit above FJ's mental arithmetic capabilities.

Write a program to help FJ play the game and keep up with the cows.
Input
Line 1: Two space-separated integers: N and the final sum.
Output
Line 1: An ordering of the integers 1..N that leads to the given sum. If there are multiple solutions, choose the one that is lexicographically least, i.e., that puts smaller numbers first.
Sample Input
4 16
Sample Output
3 1 2 4
Hint
Explanation of the sample:

There are other possible sequences, such as 3 2 1 4, but 3 1 2 4 is the lexicographically smallest.       

题意:1.输入一个N,结果被限制为:只能是1到N的整数,而且只能有N个整数(即限定范围,又限定数量) 

    2.要求求出这N个数的排列,使他们按照类似杨辉三角型的规则进行相加后,结果为sum

题解:next_permutation()全排列函数的运用直至1~n中有一种排列使得最后结果为sum就结束 

#include<iostream>
#include<algorithm>
using namespace std;
int main(){
	int n;
	int sum;
	int a[15];
	int	arr[15][15];
	while(cin>>n>>sum){
		for(int i=0;i<n;i++)
			a[i]=i+1;
		do{
			for(int j=0;j<n;j++)
				arr[0][j]=a[j];
			for(int i=1;i<n;i++)
				for(int j=0;j<n-i;j++)
					arr[i][j]=arr[i-1][j]+arr[i-1][j+1];
			if(arr[n-1][0]==sum)
				break;
		}while(next_permutation(a,a+n));
		for(int i=0;i<n;i++)
			cout<<a[i]<<" ";
		cout<<endl;
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值