🍅大家好,今天给大家分享一个Python项目,感兴趣的可以先收藏起来,点赞、关注不迷路!🍅
大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。1、项目介绍
1、关键词:
Python语言、TensorFlow、卷积神经网络CNN算法、PyQt5界面、Django框架、深度学习
包含:训练预测代码、数据集、PyQt5界面+Django框架网页界面
2、训练预测文件夹中有训练代码以及数据集
3、carnum_check是Django网页版 qt_check是QT版
4、版本说明:
TensorFlow用最新版2.11.0 、 django使用最新版4.1.7、pyqt5使用最新版
5、模型: 25轮迭代1万多张图片
2、项目界面
(1)系统首页
(2)上传图片进行识别检测
(3)检测识别结果
(4)识别记录 后台管理
(5)设计文档
3、项目说明
1、关键词:
Python语言、TensorFlow、卷积神经网络CNN算法、PyQt5界面、Django框架、深度学习
包含:训练预测代码、数据集、PyQt5界面+Django框架网页界面
2、训练预测文件夹中有训练代码以及数据集
3、carnum_check是Django网页版 qt_check是QT版
4、版本说明:
TensorFlow用最新版2.11.0 、 django使用最新版4.1.7、pyqt5使用最新版
5、模型: 25轮迭代1万多张图片
车牌识别系统,通过机器学习库tensorflow作为模型构建框架,使用CNN卷积神经网络构建模型,并通过对数据集的处理划分测试集和训练集,通过多轮迭代得到训练好的模型,再将模型进行封装,并开发一个WEB界面系统用于用户的操作,最后实现用户在WEB页面中输入一张车牌图片,系统以弹窗的形式显示该车牌的信息(地区汉字、字母、数字)。同时用户输入的图片、预测的结果、操作的时间都会保存在数据库中,并实现管理员在后台管理系统中可以动态查看这些信息。
下面将主要说明本系统各设计功能模块的实现。其中包括系统环境配置,系统运行界面、功能模块关系以及系统运行流程图等,详细介绍本系统实现过程。
本模块主要实现对车牌识别系统中模型训练部分。通过对数据集的处理,搭建网络模型,迭代训练等阶段最后得到一个精准的预测模型。其总体流程图如图所示。
4、核心代码
# -*- codi