文章总结
这篇文章提出了一种新的空间-时间自监督学习(Spatio-Temporal Self-Supervised Learning, ST-SSL)框架,用于交通流量预测。现有的交通预测模型在处理空间和时间异质性(即不同区域和时间段的流量分布差异)时表现不足。文章提出的ST-SSL框架通过在图结构上进行自适应数据增强,并结合空间和时间的自监督学习任务,增强了模型在捕捉这些异质性方面的能力。实验结果表明,ST-SSL在多个基准数据集上都优于现有的最先进方法,展示了其在城市交通预测中的有效性和广泛应用前景。
论文地址:https://arxiv.org/pdf/2212.04475v2
代码地址:https://github.com/echo-ji/st-ssl
方法的优点
- 处理空间和时间异质性:ST-SSL能够在交通流数据中捕捉不同区域和时间段的异质性,提升了对不同城市区域和不同时段交通流量的预测精度。
- 自监督学习增强预测能力:通过设计空间和时间自监督学习任务,ST-SSL增强了模型对交通流量的表征能力,尤其是在异质性数据上更具鲁棒性。
- 自适应数据增强:文章提出了在交通流图上进行的自适应增强机制,通过数据级和拓扑结构级的增强操作,有效减少了噪声的影响,提升了模型的泛化能