摘要
空间-时间预测系统在解决现实世界的问题中起着关键作用。本文探讨了使用通用时间序列预测模型(即不利用节点间空间关系的模型)来解决空间-时间预测问题的潜力。我们提出了一种名为 RPMixer 的全多层感知机(MLP)时间序列预测架构。选择全 MLP 架构的原因是其在时间序列预测基准测试中的成功表现。此外,我们的方法利用了深度神经网络的集成行为,其中网络内的每个独立块都像集成模型中的基础学习者,特别是在引入恒等映射残差连接时。通过将随机投影层整合到模型中,我们增加了块输出之间的多样性,从而提升了网络的整体性能。大量实验表明,该方法在大型空间-时间预测基准数据集上优于其他方法,包括空间-时间图模型和通用预测模型。
论文地址:https://arxiv.org/pdf/2402.10487v4
1. 引言
空间-时间预测系统在交通流量预测等许多实际问题中非常重要。传统上,基于图的方法被用于解决这些问题,这些方法利用时间序列和空间信息来预测未来。然而,这些方法可能在处理大规模空间-时间数据集时面临计算挑战。本文提出的问题是:如何在不使用输入图的情况下保持可扩展性和高性能?
我们提出 RPMixer 来解决这个问题,将空间-时间预测问题转化为多维时间序列预测问题。该方法采用全多层感知机(all-MLP)架构,能够避免计算代价高昂的成对相似度矩阵。通过引入随机投影层,RPMixer 提升了学习节点关系的能力。此外,为了捕获时间序列中的周期性特征,RPMixer 使用快速傅立叶变换(FFT)在频域内处理时间序列。
2. 相关工作
空间-时间预测方法通常使用图或网格格式来表示空间信息。现有的基于图的方法(如 DCRNN、STGCN 等)通过结合图卷积网络和序列建模架构来实现预测,但在大型数据集上可能面临计算和空间复杂性问题。本文的目标是设计一种仅使用多层感知机(MLP)的模型,以避免计算代价高昂的图表示。
3. 问题定义
给定一个空间-时间数据集中的邻接矩阵和历史时间序列,目标是学习一个模型来预测未来的时间序列矩阵。在没有输入图的情况下,这个问题可以被看作多维时间序列预测问题。
4. 方法
RPMixer 采用了类似 TSMixer 的全 MLP 架构,但在三个方面有所不同:1)强调使用预激活设计的恒等映射连接;2)引入随机投影层来增加不同混合器块之间的输出多样性;3)通过在频域内处理时间序列来增强模型的时序建模能力。
4.1 复线性层:利用 FFT 将时间序列转换到频域,然后通过两个线性层分别处理实部和虚部,以捕获时序中的周期性特征。
4.2 随机投影层:这是一个固定、随机初始化的线性层,能够保留高概率的时间序列之间的关系,增加了模型的多样性。
4.3 预激活恒等映射:恒等映射连接用于创建类似于集成模型的行为,从而增强了模型的性能。
5. 实验
在大型空间-时间数据集 LargeST 上进行了实验,验证了 RPMixer 的有效性。实验结果表明,RPMixer 在各种评估指标上优于现有的方法,尤其是在较大的数据集上。
6. 结论
本文提出了一种名为 RPMixer 的空间-时间预测方法,通过引入随机投影层,增强了模型的多样性和性能。未来的研究将探索使用时间序列基础模型解决空间-时间预测问题的潜力。
总结
RPMixer 是一种用于大型空间-时间数据集预测的新方法,通过随机投影增强多层感知机(MLP)模型的性能。该方法主要优势在于:
- 创新点:引入随机投影层,增加了模型中不同块的输出多样性。该方法不依赖于输入图,从而避免了传统方法在计算相似度矩阵时的高空间复杂性。同时,RPMixer 在频域内处理时间序列,以捕获时序中的周期性特征。
- 优点:相比基于图的传统空间-时间预测模型,RPMixer 具有更好的可扩展性和计算效率,尤其在大型数据集上表现优异。其全 MLP 架构简化了模型设计,避免了计算成本高昂的图卷积操作。
- 缺点:由于 RPMixer 不利用输入图的空间关系,在某些特定任务中可能会损失部分空间信息。此外,随机投影层的引入增加了模型的复杂度和参数数量,在小规模数据集上可能没有显著的优势。
- 可改进点:未来研究可以探索结合其他空间信息的方式,如通过数据驱动的方法自动学习空间关系。此外,可以研究如何更好地利用 FFT 处理非周期性时间序列,以提升 RPMixer 在不同类型时间序列上的泛化能力。
总的来说,RPMixer 提供了一种创新的空间-时间预测解决方案,通过引入随机投影增加了模型的多样性,具有良好的扩展性和效率。