一步一步学OAK之七:通过OAK相机实现特征跟踪

本文详细介绍了如何使用DepthAI库在OAK相机上进行特征跟踪,涵盖了从创建文件、安装依赖、导入包,到配置特征跟踪器、建立数据链接,以及在连续帧中追踪和显示特征点的全过程。特征跟踪在目标追踪、运动估计等领域有广泛应用。
摘要由CSDN通过智能技术生成

特征跟踪

特征跟踪,也称为目标跟踪或点跟踪,是指在序列图像中追踪物体或者场景中的特定特征点的过程。特征点可以是具有独特性质的像素,如角点、边缘、纹理等。通过跟踪这些特征点,可以在连续图像帧中确定它们的位置、速度和运动轨迹。

在计算机视觉和图像处理中,特征点是图像中具有显著性质或者信息的位置。对图像序列进行特征点的跟踪可以用于很多应用,例如目标追踪、运动估计、相机姿态估计、结构重建等。

特征点的选择通常取决于应用的需求和图像中的内容,常用的特征点检测算法包括Harris角点检测、Shi-Thomasi角点检测、SIFT(尺度不变特征变换)等。特征点跟踪的算法有很多,例如光流法、角点追踪等,它们可以根据特征点在前后帧之间的移动来判断物体或场景的运动。

DepthAI给我们提供了特征跟踪(Feature Tracker)功能模块,它用于在连续的图像帧中追踪和识别特定的特征点。Depthai 通过使用硬件加速和可编程的算法,实现了实时的特征跟踪功能。

DepthAI 的特征跟踪功能通常用于目标追踪和运动估计应用。它可以识别并跟踪视频中的关键点、边缘、角点或其他具有显著性质的图像特征。这些特征点的位置和运动轨迹可以用于估计物体的运动,在许多应用中非常有用,比如机器人导航、增强现实、虚拟现实等。

另外,DepthAI 给我们提供了编程接口,使开发人员能够配置和使用特征跟踪功能。通过适当的配置参数和算法选择,可以优化特征跟踪的性能和准确性,以满足应用的需求。
下面我们来实现一个OAK相机特征跟踪的代码

Setup 1: 创建文件

  • 创建新建7-feature-tracker文件夹
  • 用vscode打开该文件夹
  • 新建一个main.py 文件

Setup 2: 安装依赖

安装依赖前需要先创建和激活虚拟环境,我这里已经创建了虚拟环境OAKenv,在终端中输入cd…退回到OAKenv的根目录,输入 OAKenv\Scripts\activate激活虚拟环境

安装pip依赖项:

pip install numpy opencv-python depthai blobconverter --user

Setup 3: 导入需要的包

在main.py中导入项目需要的包

import cv2
import depthai as dai
from collections import deque

这里从 Python 的 collections 模块中导入 deque 类,deque 类提供了各种方法来操作队列,如 append()appendleft()pop()popleft(),以及像列表一样的索引访问。当需要高效地从队列的两端添加或删除元素时,deque 尤为有用。

Setup 4: 定义FeatureTrackerDrawer类

定义一个名为 FeatureTrackerDrawer 的类,用于绘制特征追踪器的路径。

class FeatureTrackerDrawer:

定义变量

    lineColor = (200, 0, 200)
    pointColor = (0, 0, 255)
    circleRadius = 2
    maxTrackedFeaturesPathLength = 30 
    trackedFeaturesPathLength = 10

    trackedIDs = None
    trackedFeaturesPath = None
  • lineColor:追踪路径的线条颜色。
  • pointColor:特征点的颜色。
  • circleRadius:绘制特征点的圆的半径。
  • maxTrackedFeaturesPathLength:追踪路径的最大长度。
  • trackedFeaturesPathLength:追踪路径的当前长度。
  • trackedIDs:当前追踪的特征点的 ID 集合。
  • trackedFeaturesPath:特征点的追踪路径。

定义onTrackBar方法

    def onTrackBar(self, val):
        FeatureTrackerDrawer.trackedFeaturesPathLength = val
        pass

这个 onTrackBar 方法接收一个参数 val,该参数表示滑动条的当前值。

在这个方法中,它将传入的 val 值赋给 FeatureTrackerDrawer.trackedFeaturesPathLength,以更新追踪路径的长度。这样,当滑块的值改变时,追踪路径的长度也会相应地改变。

pass 语句表示该方法暂时不执行任何具体的操作,仅作为占位符存在。

定义trackFeaturePath方法

trackFeaturePath方法用于追踪特征点的路径,并更新追踪路径记录。

    def trackFeaturePath(self, features):

        newTrackedIDs = set()
        for currentFeature in features:
            currentID = currentFeature.id
            newTrackedIDs.add(currentID)

            if currentID not in self.trackedFeaturesPath:
                self.trackedFeaturesPath[currentID] = deque()

            path = self.trackedFeaturesPath[currentID]

            path.append(currentFeature.position)
            while(len(path) > max(1, FeatureTrackerDrawer.trackedFeaturesPathLength)):
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

九仞山

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值