目录
特征跟踪
特征跟踪,也称为目标跟踪或点跟踪,是指在序列图像中追踪物体或者场景中的特定特征点的过程。特征点可以是具有独特性质的像素,如角点、边缘、纹理等。通过跟踪这些特征点,可以在连续图像帧中确定它们的位置、速度和运动轨迹。
在计算机视觉和图像处理中,特征点是图像中具有显著性质或者信息的位置。对图像序列进行特征点的跟踪可以用于很多应用,例如目标追踪、运动估计、相机姿态估计、结构重建等。
特征点的选择通常取决于应用的需求和图像中的内容,常用的特征点检测算法包括Harris角点检测、Shi-Thomasi角点检测、SIFT(尺度不变特征变换)等。特征点跟踪的算法有很多,例如光流法、角点追踪等,它们可以根据特征点在前后帧之间的移动来判断物体或场景的运动。
DepthAI给我们提供了特征跟踪(Feature Tracker)功能模块,它用于在连续的图像帧中追踪和识别特定的特征点。Depthai 通过使用硬件加速和可编程的算法,实现了实时的特征跟踪功能。
DepthAI 的特征跟踪功能通常用于目标追踪和运动估计应用。它可以识别并跟踪视频中的关键点、边缘、角点或其他具有显著性质的图像特征。这些特征点的位置和运动轨迹可以用于估计物体的运动,在许多应用中非常有用,比如机器人导航、增强现实、虚拟现实等。
另外,DepthAI 给我们提供了编程接口,使开发人员能够配置和使用特征跟踪功能。通过适当的配置参数和算法选择,可以优化特征跟踪的性能和准确性,以满足应用的需求。
下面我们来实现一个OAK相机特征跟踪的代码
Setup 1: 创建文件
- 创建新建7-feature-tracker文件夹
- 用vscode打开该文件夹
- 新建一个main.py 文件
Setup 2: 安装依赖
安装依赖前需要先创建和激活虚拟环境,我这里已经创建了虚拟环境OAKenv,在终端中输入cd…退回到OAKenv的根目录,输入 OAKenv\Scripts\activate
激活虚拟环境
安装pip依赖项:
pip install numpy opencv-python depthai blobconverter --user
Setup 3: 导入需要的包
在main.py中导入项目需要的包
import cv2
import depthai as dai
from collections import deque
这里从 Python 的 collections
模块中导入 deque
类,deque
类提供了各种方法来操作队列,如 append()
、appendleft()
、pop()
、popleft()
,以及像列表一样的索引访问。当需要高效地从队列的两端添加或删除元素时,deque
尤为有用。
Setup 4: 定义FeatureTrackerDrawer类
定义一个名为 FeatureTrackerDrawer
的类,用于绘制特征追踪器的路径。
class FeatureTrackerDrawer:
定义变量
lineColor = (200, 0, 200)
pointColor = (0, 0, 255)
circleRadius = 2
maxTrackedFeaturesPathLength = 30
trackedFeaturesPathLength = 10
trackedIDs = None
trackedFeaturesPath = None
lineColor
:追踪路径的线条颜色。pointColor
:特征点的颜色。circleRadius
:绘制特征点的圆的半径。maxTrackedFeaturesPathLength
:追踪路径的最大长度。trackedFeaturesPathLength
:追踪路径的当前长度。trackedIDs
:当前追踪的特征点的 ID 集合。trackedFeaturesPath
:特征点的追踪路径。
定义onTrackBar方法
def onTrackBar(self, val):
FeatureTrackerDrawer.trackedFeaturesPathLength = val
pass
这个 onTrackBar
方法接收一个参数 val
,该参数表示滑动条的当前值。
在这个方法中,它将传入的 val
值赋给 FeatureTrackerDrawer.trackedFeaturesPathLength
,以更新追踪路径的长度。这样,当滑块的值改变时,追踪路径的长度也会相应地改变。
pass
语句表示该方法暂时不执行任何具体的操作,仅作为占位符存在。
定义trackFeaturePath方法
trackFeaturePath方法用于追踪特征点的路径,并更新追踪路径记录。
def trackFeaturePath(self, features):
newTrackedIDs = set()
for currentFeature in features:
currentID = currentFeature.id
newTrackedIDs.add(currentID)
if currentID not in self.trackedFeaturesPath:
self.trackedFeaturesPath[currentID] = deque()
path = self.trackedFeaturesPath[currentID]
path.append(currentFeature.position)
while(len(path) > max(1, FeatureTrackerDrawer.trackedFeaturesPathLength)):