#今日论文推荐#训练数据减少多达三个数量级,等变图神经网络在长时间尺度上进行高保真分子动力学模拟
分子动力学(MD)模拟是在能源存储、催化和生物过程等领域进行计算发现不可或缺的工具。在实践中,第一性原理方法的不利计算尺度将模拟限制在较短的时间尺度和较少的原子数。基于机器学习,特别是神经网络的原子间势能灵活模型的构建,有望从从头算参考计算中学习高保真势能,同时保留有利的计算效率。
近日,来自哈佛大学的研究团队提出了神经等变原子间势 (NequIP),这是一种 E(3) 等变图神经网络方法,用于从分子动力学模拟的从头算计算中学习原子间势。NequIP 优于现有模型,训练数据减少多达三个数量级。该方法能够在长时间尺度上进行高保真分子动力学模拟。
该研究以「E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials」为题,于 5 月 4 日发布在《Nature Communications》上。
论文题目:E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.
详细解读:https://www.aminer.cn/research_report/6279d7747cb68b460fb447a8?download=falsehttps://www.aminer.cn/research_report/6279d7747cb68b460fb447a8?download=false
AMiner链接:https://www.aminer.cn/?f=cs