#今日论文推荐#训练数据减少多达三个数量级,等变图神经网络在长时间尺度上进行高保真分子动力学模拟

哈佛大学的研究团队开发了一种名为NequIP的E(3)等变图神经网络模型,该模型能够从头算计算中学习高保真的原子间势能,显著减少训练数据需求,提高分子动力学模拟的精度和效率。这项工作在长时间尺度的高保真模拟方面取得了突破,论文发表在《Nature Communications》上。
摘要由CSDN通过智能技术生成

#今日论文推荐#训练数据减少多达三个数量级,等变图神经网络在长时间尺度上进行高保真分子动力学模拟

分子动力学(MD)模拟是在能源存储、催化和生物过程等领域进行计算发现不可或缺的工具。在实践中,第一性原理方法的不利计算尺度将模拟限制在较短的时间尺度和较少的原子数。基于机器学习,特别是神经网络的原子间势能灵活模型的构建,有望从从头算参考计算中学习高保真势能,同时保留有利的计算效率。
近日,来自哈佛大学的研究团队提出了神经等变原子间势 (NequIP),这是一种 E(3) 等变图神经网络方法,用于从分子动力学模拟的从头算计算中学习原子间势。NequIP 优于现有模型,训练数据减少多达三个数量级。该方法能够在长时间尺度上进行高保真分子动力学模拟。
该研究以「E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials」为题,于 5 月 4 日发布在《Nature Communications》上。

论文题目:E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.
详细解读:https://www.aminer.cn/research_report/6279d7747cb68b460fb447a8?download=falseicon-default.png?t=M3K6https://www.aminer.cn/research_report/6279d7747cb68b460fb447a8?download=false
AMiner链接:https://www.aminer.cn/?f=cs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值