E(n) Equivariant Graph Neural Networks 项目教程
egnn 项目地址: https://gitcode.com/gh_mirrors/eg/egnn
1. 项目介绍
E(n) Equivariant Graph Neural Networks(EGNNs)是一个用于学习图神经网络的新模型,该模型具有旋转、平移、反射和排列的等变性。与现有方法相比,EGNNs在中间层不需要计算昂贵的高阶表示,同时仍然能够实现竞争性或更好的性能。此外,现有方法通常局限于3维空间中的等变性,而EGNNs可以轻松扩展到更高维空间。
该项目的主要贡献包括:
- 提出了E(n) Equivariant Graph Neural Networks模型。
- 在动力系统建模、图自编码器中的表示学习和预测分子属性等方面展示了其有效性。
2. 项目快速启动
环境准备
确保你已经安装了PyTorch 1.7.1。你可以通过以下命令安装PyTorch:
pip install torch==1.7.1
克隆项目
首先,克隆项目到本地:
git clone https://github.com/vgsatorras/egnn.git
cd egnn
运行示例代码
以下是一个简单的EGNN实现示例:
import egnn_clean as eg
import torch
# 定义参数
batch_size = 8
n_nodes = 4
n_feat = 1
x_dim = 3
# 创建虚拟变量 h, x 和全连接边
h = torch.ones(batch_size * n_nodes, n_feat)
x = torch.ones(batch_size * n_nodes, x_dim)
edges, edge_attr = eg.get_edges_batch(n_nodes, batch_size)
# 初始化EGNN
egnn = eg.EGNN(in_node_nf=n_feat, hidden_nf=32, out_node_nf=1, in_edge_nf=1)
# 运行EGNN
h, x = egnn(h, x, edges, edge_attr)
3. 应用案例和最佳实践
N-body系统实验
创建N-body数据集:
cd n_body_system/dataset
python -u generate_dataset.py --num-train 10000 --seed 43 --sufix small
运行实验:
# EGNN模型
python -u main_nbody.py --exp_name exp_1_egnn_vel --model egnn_vel --max_training_samples 3000 --lr 5e-4
# GNN模型
python -u main_nbody.py --exp_name exp_1_gnn --model gnn --max_training_samples 3000 --lr 1e-3
图自编码器实验
运行图自编码器实验:
# GNN Erdos & Renyi
python -u main_ae.py --exp_name exp1_gnn_erdosrenyi --model ae --dataset erdosrenyinodes_0.25_none --K 8 --emb_nf 8 --noise_dim 0
4. 典型生态项目
相关项目
- lucidrains/egnn-pytorch: 另一个E(n)-Equivariant Graph Neural Networks的PyTorch实现,可能用于Alphafold2的复制。
- 其他图神经网络项目: 如DGL(Deep Graph Library)和PyG(PyTorch Geometric),这些项目提供了丰富的图神经网络工具和模型。
通过这些项目,你可以进一步扩展和应用E(n) Equivariant Graph Neural Networks的能力。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考