#今日论文推荐#从CVPR 2022看域泛化(Domain Generalization)最新研究进展

本文聚焦于CVPR2022会议上关于域泛化的研究,探讨了在缺乏目标域数据的情况下,如何利用多个源域信息提升模型的泛化能力。特别地,文章介绍了Bayesian Invariant Risk Minimization(BIRM)方法,该方法通过引入Bayesian inference来缓解深度模型在IRM上的过拟合问题,从而改善模型在不同域之间的泛化性能。
摘要由CSDN通过智能技术生成

#今日论文推荐#从CVPR 2022看域泛化(Domain Generalization)最新研究进展

Domain Adaptation(DA:域自适应),Domain Generalization(DG:域泛化)一直以来都是各大顶会的热门研究方向。DA 假设我们有有一个带标签的训练集(源域),这时候我们想让模型在另一个数据集上同样表现很好(目标域),利用目标域的无标签数据,提升模型在域间的适应能力是 DA 所强调的。以此为基础,DG 进一步弱化了假设,我们只有多个源域的数据,根本不知道目标域是什么,这个时候如何提升模型泛化性呢?核心在于如何利用多个源域带来的丰富信息。本文挑选了四篇 CVPR 2022 域泛化相关的文章来研究最新的进展。

分布偏移下的泛化是机器学习的一个开放挑战。不变风险最小化(IRM)通过提取不变特征来解决这个问题。虽然 IRM 有着完备的理论体系,但是在深度模型上表现往往不是很好,本文认为这种失败主要是深度模型容易过拟合引起的,并理论验证了当模型过拟合时,IRM 退化为传统的 ERM。本文将 Bayesian  inference 引入 IRM 提出了 Bayesian Invariant Risk Min-imization(BIRM)来一定程度上缓解这个问题并取得了不错的效果。

论文题目:Bayesian Invariant Risk Minimization
详细解读:https://www.aminer.cn/research_report/62b51f257cb68b460fda2f22
AMiner链接:https://www.aminer.cn/?f=cs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值