#今日论文推荐#从CVPR 2022看域泛化(Domain Generalization)最新研究进展
Domain Adaptation(DA:域自适应),Domain Generalization(DG:域泛化)一直以来都是各大顶会的热门研究方向。DA 假设我们有有一个带标签的训练集(源域),这时候我们想让模型在另一个数据集上同样表现很好(目标域),利用目标域的无标签数据,提升模型在域间的适应能力是 DA 所强调的。以此为基础,DG 进一步弱化了假设,我们只有多个源域的数据,根本不知道目标域是什么,这个时候如何提升模型泛化性呢?核心在于如何利用多个源域带来的丰富信息。本文挑选了四篇 CVPR 2022 域泛化相关的文章来研究最新的进展。
分布偏移下的泛化是机器学习的一个开放挑战。不变风险最小化(IRM)通过提取不变特征来解决这个问题。虽然 IRM 有着完备的理论体系,但是在深度模型上表现往往不是很好,本文认为这种失败主要是深度模型容易过拟合引起的,并理论验证了当模型过拟合时,IRM 退化为传统的 ERM。本文将 Bayesian inference 引入 IRM 提出了 Bayesian Invariant Risk Min-imization(BIRM)来一定程度上缓解这个问题并取得了不错的效果。
论文题目:Bayesian Invariant Risk Minimization
详细解读:https://www.aminer.cn/research_report/62b51f257cb68b460fda2f22
AMiner链接:https://www.aminer.cn/?f=cs