神经网络超简短介绍

CNN

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

RNN与LSTM区别

循环神经网络模型(RNN)是一种节点定向连接成环的人工神经网络,是一种反馈神经网络,RNN利用内部的记忆来处理任意时序的输入序列,并且在其处理单元之间既有内部的反馈连接又有前馈连接,这使得RNN可以更加容易处理不分段的文本等。但是由于RNN只能对部分序列进行记忆,所以在长序列上表现远不如短序列,造成了一旦序列过长便使得准确率下降的结果。
长短期记忆模型(LSTM)是RNN模型的一种特殊结构类型,其增加了输入门、输出门、忘记门三个控制单元(“cell”),随着信息的进入该模型,LSTM中的cell会对该信息进行判断,符合规则的信息会被留下,不符合的信息会被遗忘,以此原理,可以解决神经网络中长序列依赖问题。
原文链接: https://blog.csdn.net/qq_32113189/article/details/79462696.

RNN

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

LSTM

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

EMLO

可前向反向,也可deep
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

BERT

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

ERNIE

在这里插入图片描述

简介:https://zhuanlan.zhihu.com/p/103208601.

在这里插入图片描述

GPT

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

Self-Attention

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值