28、决策树:从理论到实践的全面解析

决策树:从理论到实践的全面解析

1. 使用Scikit - Learn构建决策树

在机器学习领域,决策树是一种强大的模型,可用于分类和回归任务。我们可以借助Scikit - Learn这个流行的机器学习库来构建决策树。以下是具体步骤:

1.1 加载数据集

首先,我们将数据集加载为Pandas DataFrame。示例代码如下:

import pandas as pd
dataset = pd.DataFrame({
    'x_0':[7,3,2,1,2,4,1,8,6,7,8,9],
    'x_1':[1,2,3,5,6,7,9,10,5,8,4,6],
    'y': [0,0,0,0,0,0,1,1,1,1,1,1]
})

1.2 分离特征和标签

接着,我们需要将特征和标签分开,代码如下:

features = dataset[['x_0', 'x_1']]
labels = dataset['y']

1.3 构建决策树

使用 DecisionTreeClassifier 对象和 fit 函数来构建决策树:

from sklearn.tree import DecisionTreeClassifier
decision_tree = Dec
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值