决策树:从理论到实践的全面解析
1. 使用Scikit - Learn构建决策树
在机器学习领域,决策树是一种强大的模型,可用于分类和回归任务。我们可以借助Scikit - Learn这个流行的机器学习库来构建决策树。以下是具体步骤:
1.1 加载数据集
首先,我们将数据集加载为Pandas DataFrame。示例代码如下:
import pandas as pd
dataset = pd.DataFrame({
    'x_0':[7,3,2,1,2,4,1,8,6,7,8,9],
    'x_1':[1,2,3,5,6,7,9,10,5,8,4,6],
    'y': [0,0,0,0,0,0,1,1,1,1,1,1]
})
 
1.2 分离特征和标签
接着,我们需要将特征和标签分开,代码如下:
features = dataset[['x_0', 'x_1']]
labels = dataset['y']
 
1.3 构建决策树
 使用  DecisionTreeClassifier  对象和  fit  函数来构建决策树: 
from sklearn.tree import DecisionTreeClassifier
decision_tree = Dec
                
                      
                            
                        
                            
                            
                          
                          
                            
                  
                订阅专栏 解锁全文
                
            
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					899
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            