一个乳腺癌组织病理图像数据集和几种常用的特征提取方法、常用的分类算法

本文介绍了两种用于乳腺癌病理图像分类的特征提取算法:LBP 和 CLBP。LBP 是一种简单有效的纹理分类算法,通过分析像素点及其周围像素点的关系来提取特征。CLBP 则是对 LBP 的改进,通过结合中心像素的 LBP 算子和局部差分符号数值变换算子,以提高特征提取的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文标题:A Dataset for Breast Cancer Hsitopathological Image classfication

文章首先列举了几种特征提取算法:

1.Local Binary patterns

LBP是一种简单有效的用于纹理分类的特征提取算法,由ojala等人于1996年提出,从纹理分析的角度看,图像上某个像素点的纹理特征,大多数情况下是指这个像素点和周围像素点的关系,从哪个角度提取这种关系,就形成了不同种类对特征

LPB算子值的计算方法:最初为3*3的方形,新的计算方法是以R为半径的圆形

Uniform模式:从0到1,或从1到0最多有两次跳变

LBP算法可在一定程度上解决光照的影响,只要光照的变化不足以改变两个点像素值间的关系,但当图像光照不均匀,各点像素间大小被破坏,对应但LPB模式也就发生了变化

而研究人员又发现,可将一幅图划分为若干区域,然后对区域内LBP特征建立统计直方图,利用这些直方图,就可以描述这幅图了,而后便可利用分类算法分类

后有对LPB算法改进,使其具有旋转不变性

 

2,completed Local Binary pattern

CLBP是目前LBP的最新形式,传统的LBP算子在提取纹理特征时,会丢失一部分信息,会导致两种不同的结构得到相同的结果,如下图:

因此Guo等人提出了completed LBP,该算子由两部分组成,即中心像素的LBP算子,和局部差分符号数值变换算子,后者又分为符号LBP算子和数值LBP算子,然后将三种算子对应的直方图融合,即可用于分类

### 病理图像分类的技术方法综述 病理图像分类作为医疗影像处理的重要分支,涉及多种技术手段算法框架。以下是几种常见的方法及其特点: #### 1. 基于传统机器习的方法 传统的机器方法依赖手工设计特征提取器来描述图像中的重要模式。这些特征通常包括纹理、颜色直方图以及形态特性等。支持向量机 (SVM)[^2] 随机森林 (Random Forests) 是常用分类器,在早期的研究中取得了较好的效果。 对于乳腺癌组织病理研究而言,选择合适的分类器至关重要[^3]。尽管如此,这类方法受限于特征工程的质量,难以捕捉复杂的高维空间关系。 #### 2. 卷积神经网络(CNN) 近年来,深度习特别是卷积神经网络(CNN),已成为病理图像分类的主要工具之一。相比传统方法,CNN能够自动从数据中得高层次抽象特征而无需人工干预。例如ResNet、Inception系列架构已经在多个公开竞赛中展示出了卓越的表现力[^4]。 为了应对大尺寸全视野数字化切片(WSI, Whole Slide Images)带来的挑战,研究人员提出了分块策略:即将整张WSI划分为若干个小区域(称为patches),分别送入预训练好的CNN模型进行预测后再综合得出最终结论[^5]。这种方法不仅降低了单次运算所需内存消耗还提高了效率。 #### 3. 转移习与微调(Fine-tuning) 鉴于标注良好的大规模医图像数据库稀缺这一事实,迁移习成为解决此问题的有效途径。具体做法是从ImageNet等通用图片集合上预先训练好基础权重参数之后再针对特定任务做适当调整优化即可达到良好泛化能力的效果。 #### 4. 多模态融合分析 除了单纯依靠光显微镜下获取的信息外,还可以结合其他类型的生物标志物比如基因表达谱或者蛋白质资料共同构建更加全面准确的诊断体系。这种跨科交叉合作有助于揭示更多潜在规律从而提升整体性能水平。 ```python import torch from torchvision import models # 加载预训练模型 model = models.resnet18(pretrained=True) # 替换最后一层以适应新的类别数 num_ftrs = model.fc.in_features model.fc = torch.nn.Linear(num_ftrs, num_classes) ``` 上述代码片段展示了如何基于PyTorch库加载一个已经过ImageNet训练过的ResNet18模型,并修改其最后全连接层以便适配自定义的数据集需求。 ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值