💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
基于BiTCN-BiGRU的风电功率预测研究(多变量输入单步预测)
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于BiTCN-BiGRU的风电功率预测研究(多变量输入单步预测)
一、研究背景与意义
风能作为一种清洁、可再生的能源,在能源结构中占据越来越重要的地位。然而,风电功率受多种自然因素(如风速、风向、温度等)影响,具有显著的波动性和不确定性。准确的风电功率预测对于电力系统的调度、优化风电场的运行以及促进风电的并网消纳具有重要意义。基于BiTCN(双向时间卷积网络)和BiGRU(双向门控循环单元)的风电功率预测研究,结合了深度学习在时间序列预测和空间特征提取方面的优势,旨在提高风电功率预测的准确性和稳定性。
二、BiTCN-BiGRU模型概述
1. 双向时间卷积网络(BiTCN)
- 功能:BiTCN能够同时从前向和后向两个方向提取时间序列数据的特征,从而更全面地捕捉风电功率数据中的时序信息。时间卷积层通过卷积操作,自动学习并提取输入数据中的高维特征。
- 优势:相比单向时间卷积网络,BiTCN能够同时考虑过去和未来的信息,提高模型对时序数据的建模能力。
2. 双向门控循环单元(BiGRU)
- 结构:BiGRU是RNN(循环神经网络)的一种变体,通过引入门控机制和双向结构,能够捕捉时序数据中的长期依赖关系,并同时考虑过去和未来的信息。
- 优势:BiGRU在门控机制的控制下,能够有效地处理梯度消失或梯度爆炸问题,提高模型训练的稳定性。同时,双向结构使得模型能够同时利用历史信息和未来信息,提高预测的准确性。
三、基于BiTCN-BiGRU的风电功率预测模型构建
1. 数据预处理
- 收集风电场的历史风速、风向、温度等气象数据以及相应的风电发电量数据。
- 对数据进行清洗、去噪、插值等预处理操作,以消除异常值和缺失值对预测结果的影响。
- 对数据进行归一化处理,以消除不同量纲对模型训练的影响。
2. 特征提取
- 使用BiTCN对预处理后的时间序列数据进行特征提取,获取与风电功率相关的时序特征。这些特征将作为BiGRU的输入。
3. 时序依赖关系捕捉
- 将BiTCN提取的特征输入到BiGRU中,利用BiGRU捕捉这些特征之间的时序依赖关系。
4. 模型训练与优化
- 使用训练集数据对BiTCN-BiGRU模型进行训练,通过反向传播算法更新网络参数。
- 可采用优化算法(如Adam、RMSprop等)加速训练过程,并防止过拟合。
5. 模型评估
- 使用测试集数据对训练好的模型进行评估,计算预测误差(如均方误差MSE、平均绝对误差MAE等),以评估模型的预测性能。
四、研究优势与挑战
优势
- 高精度预测:BiTCN-BiGRU模型能够同时捕捉风电功率数据中的时空特征,从而实现高精度的预测。
- 适应性强:该模型能够处理非线性、高维的时序数据,适用于复杂的风电预测场景。
- 稳定性好:通过引入BiGRU的双向结构和门控机制,模型在处理时序数据时具有更好的稳定性。
挑战
- 计算复杂度:BiTCN-BiGRU模型的计算复杂度较高,需要较长的训练时间和较高的计算资源。
- 数据依赖性:模型的预测性能高度依赖于输入数据的质量和数量。如果数据存在缺失或异常值,可能会对预测结果产生较大影响。
- 参数调优:模型的性能受参数影响较大,需要进行细致的参数调优工作以获得最佳预测效果。
五、未来展望
随着深度学习技术的不断发展,基于BiTCN-BiGRU的风电功率预测研究将不断深入和完善。未来的研究方向可能包括:
- 多源数据融合:将更多的数据源(如气象数据、地理数据、电网运行数据等)进行融合,以提高预测模型的准确性和鲁棒性。
- 模型优化:通过引入注意力机制、残差网络等先进算法对BiTCN-BiGRU模型进行优化,以进一步提高预测精度和训练效率。
- 实时预测系统:开发高效的实时预测系统和平台,实现风电功率的实时预测和动态调度,提高风电场的运营效率和经济效益。
📚2 运行结果
部分代码:
% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74 0.8 0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]
%
% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75 0.74 0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87 0.15 712.77 684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】
%
% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75 0.74 0.87 0.15 716.94 712.77
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72 0.87 0.08 742.81 751.3】
function res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
for i = 1:num_samples
h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
res{i,1}= h1;
h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
res{i,2} = h2;
end
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.
[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.
[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.
[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取