【单变量输入多步预测】基于CNN-BiGRU-Attention的风电功率预测研究(Matlab代码实现)

       💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于CNN-BiGRU-Attention的风电功率预测研究(单变量输入多步预测)

一、研究背景与意义

二、模型概述

三、模型构建与预测流程

四、研究优势与应用前景

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于CNN-BiGRU-Attention的风电功率预测研究(单变量输入多步预测)

一、研究背景与意义

风能作为一种清洁、可再生的能源,在全球能源结构转型中扮演着越来越重要的角色。然而,由于风速的随机性和不稳定性,风电功率的预测一直是一个具有挑战性的问题。精准的风电功率预测对于电力系统的调度、优化风电场的运行以及促进风电的并网消纳具有重要意义。因此,开发精确的风电功率预测模型,特别是能够实现单变量输入多步预测的模型,具有显著的学术价值和实际应用前景。

二、模型概述

基于CNN-BiGRU-Attention的风电功率预测模型结合了深度学习技术在特征提取、时序建模和注意力分配方面的优势,旨在提高风电功率预测的准确性和稳定性。该模型主要由以下三个部分组成:

  1. CNN(卷积神经网络):擅长提取图像和时间序列数据中的局部特征信息。在风电功率预测中,CNN用于提取与风电功率相关的单一变量(如风速)的空间特征,如风速变化趋势、季节性变化等。通过滑动窗口和池化层,CNN能够捕捉数据中的局部特征,并减少数据维度。

  2. BiGRU(双向门控循环单元):是RNN(循环神经网络)的一种变体,结合了前向和后向两个方向的GRU(门控循环单元),能够更有效地捕捉数据中的时间序列特征。在风电功率预测中,BiGRU能够捕捉风速随时间的变化规律,同时考虑过去和未来的信息,提高预测精度。

  3. Attention(注意力机制):允许模型在处理序列数据时,集中关注输入序列中最相关的部分。在风电功率预测中,Attention机制可以增强模型对关键时间步的敏感度,提高预测精度。在单变量输入多步预测的场景下,Attention机制可以帮助模型识别对未来多个时间步预测结果影响较大的风速特征,并对其进行加权。

三、模型构建与预测流程

基于CNN-BiGRU-Attention的风电功率预测模型构建主要包括以下几个步骤:

  1. 数据预处理:对风电功率历史数据进行清洗、归一化等处理,以便于神经网络学习。在单变量输入多步预测的场景下,需要确保输入数据仅为风速序列,并对其进行适当的预处理。

  2. 模型构建:结合CNN、BiGRU和Attention机制构建风电功率预测模型。CNN用于提取风速数据的空间特征,BiGRU用于捕捉时间序列特征,Attention机制用于增强对关键时间步的敏感度。

  3. 模型训练:使用训练集数据对模型进行训练,通过反向传播算法更新网络参数,目标是最小化预测误差(如均方误差)。在训练过程中,可以采用优化算法(如Adam、RMSprop等)加速训练过程,并防止过拟合。

  4. 结果评估:使用测试集数据对训练好的模型进行评估,计算预测误差(如平均绝对误差MAE、均方根误差RMSE等),以评估模型的预测性能。在单变量输入多步预测的场景下,需要特别关注模型对未来多个时间步的预测能力。

四、研究优势与应用前景

基于CNN-BiGRU-Attention的风电功率预测模型在单变量输入多步预测方面具有以下优势:

  1. 高精度:模型能够同时捕捉风电功率数据中的空间和时间特征,以及关键时间步的信息,从而实现高精度的预测。

  2. 适应性强:该模型能够处理非线性、高维的时序数据,适用于复杂的风电预测场景。

  3. 稳定性好:通过引入BiGRU的双向结构和门控机制,模型在处理时序数据时具有更好的稳定性。

  4. 实时预测潜力:模型结构灵活,可通过优化算法和硬件加速实现实时预测,为风电场的动态调度提供有力支持。

在应用前景方面,基于CNN-BiGRU-Attention的风电功率预测模型可以广泛应用于风电场的运营优化、电力系统的调度和能源管理等领域。随着深度学习技术的不断发展,该模型将不断完善和优化,为风电产业的可持续发展提供更加可靠的技术支持。

📚2 运行结果

部分代码:

layers0 = [ ...
    % 输入特征
    sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
    % CNN特征提取
    convolution2dLayer([2,1],4,'Stride',[1,1],'name','conv1')  %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
    batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
    reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
      % 池化层
    maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
    % 展开层
    sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复
    %平滑层
    flattenLayer('name','flatten')
    
    lstmLayer(25,'Outputmode','last','name','hidden1') 
    dropoutLayer(0.2,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入

    fullyConnectedLayer(outdim,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %
    regressionLayer('Name','output')    ];
    
lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');


%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 150, ...                            % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.01, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod',70, ...                   % 训练100次后开始调整学习率
    'LearnRateDropFactor',0.01, ...                    % 学习率调整因子
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 17
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值