一文理解生成式AI应用的五个级别:Tool、Chatbot、Copilot、Agent 和 Intelligence

作者:明明如月学长, CSDN 博客专家,大厂高级 Java 工程师,《系统掌握大语言模型提示词 - 从理论到实践》 作者、《性能优化方法论》作者、《解锁大厂思维:剖析《阿里巴巴Java开发手册》》、《再学经典:《Effective Java》独家解析》专栏作者。

热门专栏推荐

热门文章推荐

当下,很多人对 AI 一知半解,并不能很好地区分:Tool、Chatbot、Copilot、Agent 和 Intelligence 概念之间的区别。
最近读完 《真格基金戴雨森谈生成式AI:这是比移动互联网更大的创业机会,开始行动是关键 》 发现讲的特别清楚。

本文是对该文章五个等级的简单展开介绍。

一图速读:
在这里插入图片描述


在当前的AI应用领域,根据其智能化程度和自主工作能力,可以将其分为五个级别:Tool、Chatbot、Copilot、Agent 和 Intelligence。这些级别的划分帮助我们理解不同AI技术的应用场景及其发展潜力。
在这里插入图片描述

L1 Tool

Tool级别的AI应用基本上没有显性的AI辅助,所有工作完全由人类完成。这类应用只是一些简单的工具,在未来可能会被逐渐升级淘汰。尽管如此,这些工具依然在某些领域有其存在的价值,但其技术含量和智能化程度较低,无法满足日益复杂的需求。

L2 Chatbot

Chatbot,即聊天机器人,是一种人类与AI互动的基础形式。在这一级别中,人类完成绝大部分工作,AI仅用于提供信息和建议,但不直接处理任务。当前绝大部分的Chatbot应用中,人和AI的工作比例约为9:1。这类应用的代表包括初代的ChatGPT,虽然能够理解和回答问题,但缺乏处理复杂任务的能力。

L3 Copilot

Copilot级别的AI应用意味着人类和AI共同完成工作,工作量相当。AI可以根据人类的要求完成初稿,人类则进行目标设定、修改调整和最终确认。Copilot级别的应用如Github Copilot、Midjourney和带插件的ChatGPT等,已经展示了AI在协助人类工作中的巨大潜力。这一阶段的AI应用价值显著增加,但仍需要人类的参与和监督。

L4 Agent

在Agent级别,AI已经能够完成绝大部分工作。人类的责任主要是设定目标、提供资源和监督结果。AI完成任务的分配、工具选择、进度控制,实现目标的自主性显著提升。这类应用的代表是AutoGPT,展示了AI在执行复杂任务中的能力。Agent级别的AI接近通用人工智能(AGI),在未来将可能承担更多人类工作。

L5 Intelligence

Intelligence级别的AI应用是完全自主的,无需人类监控。AI能够自主理解目标,寻找资源,选择并使用工具,完成全部工作,人类仅需给出初始目标。这类智能接近科幻小说中的机器人,如《诺依曼机器人》中的描述,甚至有可能达到超越人类的水平。这是AI发展的最终目标,代表了最高程度的智能化和自主化。

未来的发展方向

当前来看,L3和L4级别的AI应用具有更大的价值,但需要强大的大模型能力来进一步支持其升级。停留在GPT-3.5水平的大模型无法支撑复杂的Agent开发,因此大模型的持续升级至关重要。我们鼓励大模型公司不断挑战AGI,不仅仅停留在L2级别的Chatbot微调上。只有当AI技术能够升级到L5级别的智能时,才能实现真正接近科幻中机器人水平的智能化应用。

在这个不断发展的领域,AI技术的提升不仅仅是技术进步,更是推动社会和生产力发展的重要力量。未来,我们期待更多高级别AI应用的出现,为人类创造更大的价值和便利。

自己的一些思考

对提示词的影响

由于现在的大语言模型能力还不够强,现在的提示词工程承受了“小小年纪不该承受之重”,不仅需要描述清楚任务,还需要告诉模型该怎么做。随着未来大语言模型不断发展,各种 AI 软硬件不断出现,模型了解的背景更多,我们更侧重讲清楚任务而不需要教大模型做事。

对程序员的影响

程序员短期内还没那么容易被取代,程序员的工作不仅是写代码,还有需求分析,程序员之间的沟通交流,接口定义,代码测试,修复 BUG等,现在大模型还没发完全取代这些工作。
但随着大语言模型的不断增强,越来越多的任务将可以由 AI 来完成,我们现在需要开始思考如何应对。
我们需要增强那些不容易被AI 取代的能力,如复杂业务的分析能力,增强沟通表达能力,创造力等。
也可以参考《新程序员 007》 中网易副总裁汪源在《GPT 时代的程序员生存之道》中提到的,一是转向全栈,更好地培养对业务核心流程、领域设计等方面的经验;二是向复合型人才转变,即往管理、架构、业务、营销和技术型产品等方向发展。

### ChatbotAgent的概念及区别 #### 定义比较 Chatbot 是一种基于自然语言处理技术的人机交互方式,主要用于通过对话的形式向用户提供信息或帮助。其核心功能在于理解应用户的提问,通常依赖于预定义的知识库或者大型语言模型的支持[^2]。 相比之下,Agent 更强调自主性行动能力。它不仅限于简单的问答交流,还具备执行具体任务的功能。例如,在某些场景下,智能 Agent 可以主动规划路径、调用外部工具来解决问题并反馈结果给用户[^1]。 #### 技术实现差异 从技术角度来看,构建一个基础版 chatbot 主要涉及 NLP(Natural Language Processing)模块的设计以及界面展示部分;而开发高级别agent 则需要集成更多复杂的子系统如决策引擎、环境感知单元等。此外,现代智能 agents 往往会利用 reinforcement learning 方法提升自我学习能力适应新情境的速度。 #### 应用场景分析 对于只需要获取特定领域内知识解答的应用场合来说,采用 chatbots 就已经足够满足需求了。比如在线客服系统可以通过配置好的FAQ列表迅速定位到匹配的答案返回给访问者查看。 然而当面临更复杂业务流程自动化的需求时,则更适合选用具有较强操作权限服务范围广泛的 digital workers 即所谓的 intelligent agents 来承担起整个过程中的多个环节工作负荷。例如企业内部审批流管理平台上的虚拟助理可以代替人工完成文档审核提交等一系列动作后再通知相关人员下一步骤安排情况说明等等。 ```python import gradio as gr def echo(message, history): return message with gr.Blocks() as demo: chatbot = gr.Chatbot() msg = gr.Textbox(label="Enter text here...") clear = gr.ClearButton([msg, chatbot]) msg.submit(echo, [msg, chatbot], chatbot) demo.launch() ``` 上述代码片段展示了如何使用 Gradio 创建一个基本的聊天机器人实例。这属于典型的 chatbot 实现案例之一。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明明如月学长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值