相机畸变详细推导

相机畸变模型


在前一篇文章中有提到,应该比较好理解。




我们可以看出在上图中可以分以下几个坐标系:

① 像机坐标系Oc

② 图像像素坐标系Oi

③ 世界坐标系Ow

④ 实际图像物理坐标系Od

⑤ 理想图像物理坐标系Ou



2、畸变量

此时,畸变量可分为在X方向和Y方向上,这种畸变量我们只考虑了径向畸变,其他畸变右以忽略不计,径向畸变本身是有一定的线性关系的,下面畸变模型的讲解时也会说到:





xx方向畸变量

yy方向畸变量




3、实际图物理坐标系与像素坐标系的关系(基本关系)





dx: x方向的像素距(每个像素在x方向的长度)

dy: y方向的像素距(每个像素在y方向的长度)



4、基本公式(在线性标定的基础上)





5、畸变的总体表示



径向畸变Dr

离心畸变Dt

薄棱镜畸变Dp


6、三种畸变的数学模型

 

径向畸变及其规律(径向约束):




离心畸变:




薄棱镜畸变:



总畸变:





畸变系数:

径向畸变:k1

离心畸变:p1, p2

薄棱径畸变:s1, s2




7、模型参数


内参数:

      焦比:fu, fv

      图像中心(主点)坐标:u0,v0

畸变系数: k1, p1, p2, s1, s2

 

 

外参数:

      平移矢量:T

      旋转矩阵:R

 

典型标定方法

    利用像机畸变模型建立约束方程

    确定优化目标函数

以非线性优化方法求解

 

缺点:

    优化程序计算复杂,速度慢

    标定的结果取决于初始值



8、两步标定法正式开始


1987年由Tsai提出

第一步:求除tz外的所有外参数

    利用径向排列约束(RAC

    线性求解

第二步:求其余参数

    非线性优化


9、两步法的前提


假设:

 u0,v0已知

只考虑二阶径向畸变

 主点既是图像中心又是径向畸变中心

 

 

10、公式推导





得到以下公式:




11、径向约束公式






上面已经求出:




综合可得:



乘开:




12、第一步

1、求中间变量

 

为了方便表示与计算,用参数将变量代替:



2、 求|ty|






4、求tx




5、求R



6、确定ty符号:




ty>0, 求其它参数

     用远离图像中心的特征点计算:

 

 

假设条件正确:

    xciui-u0同号

    ycivi-v0同号

 

 

剩余参数:fu,fv, tz, k1

约束方程:

 

13、第二步

剩余参数:fu,fv, tz, k1








已知:




求:

 

方法:非线性优化

 

 

确定初始值:

  k1=0, dv=1

  忽略非线性畸变,求解fvtz





14U0V0的标定

直接光学方法 

变焦距法

径向排列约束法

 

 

直接光学法

用一束激光照射像机镜头

在光路上放一张有孔的纸

使激光的入射光线与反射光线重合

用像机摄取包含激光光斑的图象

光斑的中心坐标即为光心坐标

调整困难但精度较高 

 

 

变焦距法

 

条件:光心与镜头的缩放中心重合

实现:

      不同距离分别对多个特征点成像

      每个特征点一个线性方程




径向排列约束法





利用共面标定板,取zwi=0

 

 

 

非线性优化求解

 

 

15、小小总结一下:

前面标定方法共性:

    已知特征点二维图像坐标与三维空间坐标

    需要标定参照物

统称:传统标定方法

优点:适用任意摄像机模型,标定精度高

不足:需标定参照物,某些应用中难以实现

相机内参标定是指确定相机的内部参数,包括焦距、主点坐标和畸变参数等。其中,最常用的相机内参标定方法是使用棋盘格标定法。 推导相机内参标定的公式涉及到相机投影模型以及棋盘格图像中的特征点坐标。下面是相机内参标定的公式推导过程: 1. 相机投影模型: 在相机投影模型中,将三维空间的点通过相机投影变换映射到二维图像平面上。这个变换过程可以用如下公式表示: x = f * X / Z + cx y = f * Y / Z + cy 其中,(x, y) 是图像平面上的点坐标,(X, Y, Z) 是三维空间中的点坐标,f 是焦距,(cx, cy) 是主点坐标。 2. 棋盘格图像特征点坐标: 在棋盘格标定法中,通过拍摄棋盘格图像并检测出图像中的棋盘格角点,可以得到一系列特征点的像素坐标。 3. 内参标定公式推导: 假设有 N 个特征点,在相机投影模型中,每个特征点对应一个方程: x_i = f * X_i / Z_i + cx y_i = f * Y_i / Z_i + cy 其中,(x_i, y_i) 是第 i 个特征点的图像坐标,(X_i, Y_i, Z_i) 是该特征点在相机坐标系下的三维坐标。 将这 N 个方程组合成矩阵形式: [x_1, y_1, 1] [f, 0, cx] [X_1] [x_2, y_2, 1] = [0, f, cy] * [Y_1] ... [0, 0, 1] [Z_1] ... ... [x_N, y_N, 1] [X_N] [Y_N] [Z_N] 可以使用最小二乘法求解上述方程组,得到相机的内部参数,即焦距 f、主点坐标 (cx, cy)。 4. 畸变参数的标定: 在实际相机中,由于光学镜头的制造误差等原因,图像中的像素并不完全符合理想投影模型。因此,需要引入畸变参数来校正图像。 常用的畸变模型是径向畸变模型。径向畸变可以通过以下公式进行校正: x_c = x * (1 + k_1 * r^2 + k_2 * r^4 + k_3 * r^6) y_c = y * (1 + k_1 * r^2 + k_2 * r^4 + k_3 * r^6) 其中,(x, y) 是未校正的图像坐标,(x_c, y_c) 是校正后的图像坐标,r 是径向距离,k_1、k_2、k_3 是径向畸变系数。 通过以上推导过程,可以得到相机内参标定的公式。在实际应用中,可以使用标定板拍摄一系列图像,并通过相机内参标定算法求解相机内参。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值