传统的不确定性量化数值方法

输入参数化

当系统的随机输入是系统参数时,参数化过程将很简单,因为输入已经是参数形式。我们关心的问题是这些系统参数之间是否独立, 具体而言:
Y = ( Y 1 , ⋯   , Y n ) , n > 1 Y=(Y_1,\cdots, Y_n), n>1 Y=(Y1,,Yn),n>1 是系统参数, 其对应的分布函数为 F Y ( y ) = P ( Y ≤ y ) F_Y(y)=P(Y\leq y) FY(y)=P(Yy), 我们希望寻找一组相互独立的随机变量 Z = ( Z 1 , ⋯   , Z n ) ∈ R d , 1 ≤ d ≤ n Z=(Z_1,\cdots,Z_n)\in\mathbb{R}^d,1\leq d\leq n Z=(Z1,,Zn)Rd,1dn, 使得 Y = T ( Z ) Y=T(Z) Y=T(Z), 其中 T T T 是一个合适的变换.

我们用一个简单的例子来解释上述事情。 考虑一个带两个随机参数的常微分方程:
d u d t ( t , ω ) = − α ( ω ) u , u ( 0 , ω ) = β ( ω ) , \frac{du}{dt}(t,\omega)=-\alpha(\omega)u,\quad u(0,\omega)=\beta(\omega), dtdu(t,ω)=α(ω)u,u(0,ω)=β(ω),
其中 α , β \alpha,\beta α,β 是随机的, 也就是说: 输入变量 Y ( ω ) = ( α ( ω ) , β ( ω ) ) ∈ R 2 Y(\omega)=(\alpha(\omega),\beta(\omega))\in \mathbb{R}^2 Y(ω)=(α(ω),β(ω))R2.

如果 α , β \alpha,\beta α,β 是相互独立的, 则我们令 Z ( ω ) = Y ( ω ) Z(\omega)=Y(\omega) Z(ω)=Y(ω). 则解 u ( t , ω ) : [ 0 , T ] × Ω → R u(t,\omega):[0,T]\times \Omega\to \mathbb{R} u(t,ω):[0,T]×ΩR 可以被表述为 u ( T , Z ) : [ 0 , T ] × R 2 → R , u(T,Z):[0,T]\times \mathbb{R}^2\to\mathbb{R}, u(T,Z):[0,T]×R2R, 即方程有一个时间维度和两个随机维度。

如果 α , β \alpha,\beta α,β 不是相互独立的, 则存在函数 f f f 使得 f ( α , β ) = 0 f(\alpha,\beta)=0 f(α,β)=0. 则我们可以找到一个随机变量 Z ( ω ) Z(\omega) Z(ω) 使得
α ( ω ) = a ( Z ( ω ) ) , β ( ω ) = b ( Z ( ω ) ) , f ( a , b ) = 0. \alpha(\omega)=a(Z(\omega)),\quad \beta(\omega)=b(Z(\omega)), \quad f(a,b)=0. α(ω)=a(Z(ω)),β(ω)=b(Z(ω)),f(a,b)=0.
或者, 等价地, α , β \alpha,\beta α,β 相关可以推出存在函数 g g g 使得 β = g ( α ) . \beta=g(\alpha). β=g(α). 接着我们令 Z ( ω ) = α ( ω ) , β ( ω ) = g ( Z ( ω ) ) . Z(\omega)=\alpha(\omega),\beta(\omega)=g(Z(\omega)). Z(ω)=α(ω),β(ω)=g(Z(ω)). 此时, 问题的解便变为
u ( t , Z ) : [ 0 , T ] × R → R , u(t,Z):[0,T]\times \mathbb{R}\to \mathbb{R}, u(t,Z):[0,T]×RR,
即只有一个随机维度。
实际问题中, 系统中有许多随机参数, 找到这些随机参数依赖的精确函数形式(即 f , g f,g f,g) 是很困难的。我们能知道的信息仅仅是他们对应的(联合)概率分布函数, 于是我们的目标便是使用分布函数来找到变换 T T T.

高斯参数

对于高斯参数, 这件事情是比较容易的。 假设 Y = ( Y 1 , ⋯   , Y n ) ∼ N ( 0 , C ) , Y=(Y_1,\cdots,Y_n)\sim \mathcal{N}(0,\bm{C}), Y=(Y1,,Yn)N(0,C), 其中 C ∈ R n × n \bm{C}\in\mathbb{R}^{n\times n} CRn×n 是协方差矩阵。 令 Z ∼ N ( 0 , I ) , I ∈ R n × n Z\sim \mathcal{N}(0,\bm{I}),\bm{I}\in \mathbb{R}^{n\times n} ZN(0,I),IRn×n. A \bm{A} A 是一个 n × n n\times n n×n 的矩阵, 由高斯变换的性质我们知 A Z ∼ N ( 0 , A A T ) \bm{A}Z\sim \mathcal{N}(0, \bm{AA^T}) AZN(0,AAT). 因此, 存在矩阵 A \bm{A} A 使得 A A T = C , \bm{AA^T}=\bm{C}, AAT=C, Y = A Z ∼ N ( 0 , C ) . Y=\bm{A}Z\sim\mathcal{N}(0,\bm{C}). Y=AZN(0,C). 实际计算时, 我们可以采用 C h o l e s k y Cholesky Cholesky 分解来计算矩阵 A \bm{A} A. 具体有
a i 1 = c i 1 / c 11 , 1 ≤ i ≤ n , a i i = c i i − ∑ k = 1 i − 1 a i k 2 , 1 < i ≤ n , a i j = ( c i j − ∑ k = 1 j − 1 a i k a j k ) / a j j , 1 < j < i ≤ n , a i j = 0 , i < j < n . \begin{array}{ll} a_{i1}=c_{i1}/\sqrt{c_{11}}, &1\leq i\leq n,\\ a_{ii}=\sqrt{c_{ii}-\sum_{k=1}^{i-1}a^2_{ik}},& 1<i\leq n,\\ a_{ij} = (c_{ij}-\sum_{k=1}^{j-1}a_{ik}a_{jk})/a_{jj}, &1<j<i\leq n,\\ a_{ij}=0, &i<j<n. \end{array} ai1=ci1/c11 ,aii=ciik=1i1aik2 ,aij=(cijk=1j1aikajk)/ajj,aij=0,1in,1<in,1<j<in,i<j<n.

非高斯参数

当系统参数是非高斯分布的时候, 直接参数化变变得很困难了。 Rosenblatt 给出了如下结果来理论上解决这一问题:
Y = ( Y 1 , ⋯   , Y n ) Y=(Y_1,\cdots,Y_n) Y=(Y1,,Yn) 是一个随机向量, 其分布函数为 F Y ( y ) = P ( Y ≤ y ) , F_Y(y)=P(Y\leq y), FY(y)=P(Yy), Z = ( z 1 , ⋯   , z n ) = T y = T ( y 1 , ⋯   , y n ) Z=(z_1,\cdots,z_n)=Ty=T(y_1,\cdots,y_n) Z=(z1,,zn)=Ty=T(y1,,yn)
z 1 = P ( Y 1 ≤ y 1 ) = F 1 ( y 1 ) , z 2 = P ( Y 2 ≤ y 2 ∣ Y 1 = y 1 ) = F 2 ( y 2 ∣ y 1 ) , ⋯   , z n = P ( Y n ≤ y n ∣ Y n − 1 = y n − 1

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值