CNN神经网络猫狗分类经典案例(1)

model.add(layers.Conv2D(filters=128, kernel_size=KERNEL_SIZE, activation=‘relu’))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Flatten())

model.add(layers.Dense(512, activation=‘relu’))

model.add(Dropout(0.5))

model.add(layers.Dense(1, activation=‘sigmoid’))

model.compile(loss=‘binary_crossentropy’,

optimizer=optimizers.RMSprop(lr=1e-3),

metrics=[‘accuracy’])

return model

def fig_loss(history):

history_dict = history.history

loss_values = history_dict[‘loss’]

val_loss_values = history_dict[‘val_loss’]

epochs = range(1, len(loss_values) + 1)

plt.plot(epochs, loss_values, ‘b’, label=‘Training loss’)

plt.plot(epochs, val_loss_values, ‘r’, label=‘Validation loss’)

plt.title(‘Training and validation loss’)

plt.xlabel(‘Epochs’)

plt.ylabel(‘Loss’)

plt.legend()

plt.grid()

plt.show()

def fig_acc(history):

history_dict = history.history

acc = history_dict[‘accuracy’]

val_acc = history_dict[‘val_accuracy’]

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, ‘g’, label=‘Training acc’)

plt.plot(epochs, val_acc, ‘r’, label=‘Validation acc’)

plt.title(‘Training and validation accuracy’)

plt.xlabel(‘Epochs’)

plt.ylabel(‘Accuracy’)

plt.legend()

plt.grid()

plt.show()

def fit(model):

train_datagen = ImageDataGenerator(rescale=1. / 255)

validation_datagen = ImageDataGenerator(rescale=1. / 255)

train_generator = train_datagen.flow_from_directory(

train_dir,

target_size=(150, 150),

batch_size=256,

class_mode=‘binary’)

validation_generator = validation_datagen.flow_from_directory(

validation_dir,

target_size=(150, 150),

batch_size=64,

class_mode=‘binary’)

history = model.fit_generator(

train_generator,

steps_per_epoch=,

epochs=10,

validation_data=validation_generator,

validation_steps=,

)

model.save(model_file_name)

fig_loss(history)

fig_acc(history)

def predict():

model = load_model(model_file_name)

print(model.summary())

img_path = ‘./data/test/cat/cat.4021.jpg’

img = image.load_img(img_path, target_size=(150, 150))

img_tensor = image.img_to_array(img)

img_tensor = img_tensor / 255

img_tensor = np.expand_dims(img_tensor, axis=0)

其形状为 (1, 150, 150, 3)

plt.imshow(img_tensor[0])

plt.show()

result = model.predict(img_tensor)

print(result)

画出count个预测结果和图像

def fig_predict_result(model, count):

test_datagen = ImageDataGenerator(rescale=1. / 255)

test_generator = test_datagen.flow_from_directory(

‘./data/test/’,

target_size=(150, 150),

batch_size=256,

class_mode=‘binary’)

text_labels = []

plt.figure(figsize=(30, 20))

迭代器可以迭代很多条数据,但我这里只取第一个结果看看

for batch, label in test_generator:

pred = model.predict(batch)

for i in range(count):

true_reuslt = label[i]

print(true_reuslt)

if pred[i] > 0.5:

text_labels.append(‘dog’)

else:

text_labels.append(‘cat’)

4列,若干行的图

plt.subplot(count / 4 + 1, 4, i + 1)

plt.title('This is a ’ + text_labels[i])

imgplot = plt.imshow(batch[i])

plt.show()

可以接着画很多,但是只是随机看看几条结果。所以这里停下来。

break

if name == ‘main’:

model = init_model()

fit(model)

利用训练好的模型预测结果。

predict()

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数初中级Android工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则近万的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Android移动开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

img

img

img

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Android开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:Android)

最后,面试前该准备哪些资源复习?

其实客户端开发的知识点就那么多,面试问来问去还是那么点东西。所以面试没有其他的诀窍,只看你对这些知识点准备的充分程度。so,出去面试时先看看自己复习到了哪个阶段就好。

这里再分享一下我面试期间的复习路线:(以下体系的复习资料是我从各路大佬收集整理好的)

《Android开发七大模块核心知识笔记》

面试字节两轮后被完虐,字节面试官给你的技术面试指南,请查收

面试字节两轮后被完虐,字节面试官给你的技术面试指南,请查收

《960全网最全Android开发笔记》

面试字节两轮后被完虐,字节面试官给你的技术面试指南,请查收

《379页Android开发面试宝典》

历时半年,我们整理了这份市面上最全面的安卓面试题解析大全
包含了腾讯、百度、小米、阿里、乐视、美团、58、猎豹、360、新浪、搜狐等一线互联网公司面试被问到的题目。熟悉本文中列出的知识点会大大增加通过前两轮技术面试的几率。

《507页Android开发相关源码解析》

只要是程序员,不管是Java还是Android,如果不去阅读源码,只看API文档,那就只是停留于皮毛,这对我们知识体系的建立和完备以及实战技术的提升都是不利的。

真正最能锻炼能力的便是直接去阅读源码,不仅限于阅读各大系统源码,还包括各种优秀的开源库。

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

网公司面试被问到的题目。熟悉本文中列出的知识点会大大增加通过前两轮技术面试的几率。

《507页Android开发相关源码解析》

只要是程序员,不管是Java还是Android,如果不去阅读源码,只看API文档,那就只是停留于皮毛,这对我们知识体系的建立和完备以及实战技术的提升都是不利的。

真正最能锻炼能力的便是直接去阅读源码,不仅限于阅读各大系统源码,还包括各种优秀的开源库。

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值