model.add(layers.Conv2D(filters=128, kernel_size=KERNEL_SIZE, activation=‘relu’))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation=‘relu’))
model.add(Dropout(0.5))
model.add(layers.Dense(1, activation=‘sigmoid’))
model.compile(loss=‘binary_crossentropy’,
optimizer=optimizers.RMSprop(lr=1e-3),
metrics=[‘accuracy’])
return model
def fig_loss(history):
history_dict = history.history
loss_values = history_dict[‘loss’]
val_loss_values = history_dict[‘val_loss’]
epochs = range(1, len(loss_values) + 1)
plt.plot(epochs, loss_values, ‘b’, label=‘Training loss’)
plt.plot(epochs, val_loss_values, ‘r’, label=‘Validation loss’)
plt.title(‘Training and validation loss’)
plt.xlabel(‘Epochs’)
plt.ylabel(‘Loss’)
plt.legend()
plt.grid()
plt.show()
def fig_acc(history):
history_dict = history.history
acc = history_dict[‘accuracy’]
val_acc = history_dict[‘val_accuracy’]
epochs = range(1, len(acc) + 1)
plt.plot(epochs, acc, ‘g’, label=‘Training acc’)
plt.plot(epochs, val_acc, ‘r’, label=‘Validation acc’)
plt.title(‘Training and validation accuracy’)
plt.xlabel(‘Epochs’)
plt.ylabel(‘Accuracy’)
plt.legend()
plt.grid()
plt.show()
def fit(model):
train_datagen = ImageDataGenerator(rescale=1. / 255)
validation_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(150, 150),
batch_size=256,
class_mode=‘binary’)
validation_generator = validation_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=64,
class_mode=‘binary’)
history = model.fit_generator(
train_generator,
steps_per_epoch=,
epochs=10,
validation_data=validation_generator,
validation_steps=,
)
model.save(model_file_name)
fig_loss(history)
fig_acc(history)
def predict():
model = load_model(model_file_name)
print(model.summary())
img_path = ‘./data/test/cat/cat.4021.jpg’
img = image.load_img(img_path, target_size=(150, 150))
img_tensor = image.img_to_array(img)
img_tensor = img_tensor / 255
img_tensor = np.expand_dims(img_tensor, axis=0)
其形状为 (1, 150, 150, 3)
plt.imshow(img_tensor[0])
plt.show()
result = model.predict(img_tensor)
print(result)
画出count个预测结果和图像
def fig_predict_result(model, count):
test_datagen = ImageDataGenerator(rescale=1. / 255)
test_generator = test_datagen.flow_from_directory(
‘./data/test/’,
target_size=(150, 150),
batch_size=256,
class_mode=‘binary’)
text_labels = []
plt.figure(figsize=(30, 20))
迭代器可以迭代很多条数据,但我这里只取第一个结果看看
for batch, label in test_generator:
pred = model.predict(batch)
for i in range(count):
true_reuslt = label[i]
print(true_reuslt)
if pred[i] > 0.5:
text_labels.append(‘dog’)
else:
text_labels.append(‘cat’)
4列,若干行的图
plt.subplot(count / 4 + 1, 4, i + 1)
plt.title('This is a ’ + text_labels[i])
imgplot = plt.imshow(batch[i])
plt.show()
可以接着画很多,但是只是随机看看几条结果。所以这里停下来。
break
if name == ‘main’:
model = init_model()
fit(model)
利用训练好的模型预测结果。
predict()
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数初中级Android工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则近万的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Android移动开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Android开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:Android)
最后,面试前该准备哪些资源复习?
其实客户端开发的知识点就那么多,面试问来问去还是那么点东西。所以面试没有其他的诀窍,只看你对这些知识点准备的充分程度。so,出去面试时先看看自己复习到了哪个阶段就好。
这里再分享一下我面试期间的复习路线:(以下体系的复习资料是我从各路大佬收集整理好的)
《Android开发七大模块核心知识笔记》
《960全网最全Android开发笔记》
《379页Android开发面试宝典》
历时半年,我们整理了这份市面上最全面的安卓面试题解析大全
包含了腾讯、百度、小米、阿里、乐视、美团、58、猎豹、360、新浪、搜狐等一线互联网公司面试被问到的题目。熟悉本文中列出的知识点会大大增加通过前两轮技术面试的几率。
《507页Android开发相关源码解析》
只要是程序员,不管是Java还是Android,如果不去阅读源码,只看API文档,那就只是停留于皮毛,这对我们知识体系的建立和完备以及实战技术的提升都是不利的。
真正最能锻炼能力的便是直接去阅读源码,不仅限于阅读各大系统源码,还包括各种优秀的开源库。
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
网公司面试被问到的题目。熟悉本文中列出的知识点会大大增加通过前两轮技术面试的几率。
《507页Android开发相关源码解析》
只要是程序员,不管是Java还是Android,如果不去阅读源码,只看API文档,那就只是停留于皮毛,这对我们知识体系的建立和完备以及实战技术的提升都是不利的。
真正最能锻炼能力的便是直接去阅读源码,不仅限于阅读各大系统源码,还包括各种优秀的开源库。
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!