如何正确的理解RPN网络的train和test

刚开始学Faster RCNN时,遇到些困惑不知其他人有没有:

1、RPN网络训练的输出是什么?
2、RPN网络在train中的作用是什么?
3、RPN网络在test中的作用是什么?
其实这些我们如果不看源码都很难真正理解!

以Faster-RCNN_TF的源码为例,以下代码取自./lib/networks/VGGnet_train.py

 #========= RPN ============
 #以下代码的先后顺序我调整了一下,便于理解
 (self.feed('conv5_3')
     .conv(3,3,512,1,1,name='rpn_conv/3x3')
     .conv(1,1,len(anchor_scales)*3*2 ,1 , 1, padding='VALID', relu = False, name='rpn_cls_score'))

 (self.feed('rpn_conv/3x3')
     .conv(1,1,len(anchor_scales)*3*4, 1, 1, padding='VALID', relu = False, name='rpn_bbox_pred'))
     .anchor_target_layer(_feat_stride, anchor_scales, name = 'rpn-data' ))

重点

anchor_target_layer的返回值’rpn-data’,这是一个字典
key分别是:rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights

rpn_labels
是 [1,1,A*height,width],如果把它reshape成[1,A,height,width]会更好理解,即feature map上每一点
都是一个anchor,每个anchor对应A个bbox,如果一个bbox与gt_box的重叠度大于0.7(其实还有一个条件),就认为这个bbox包含一个前景,则
rpn_labels 矩阵中相应位置就设置为1。
gt_box的label不能直接用来做训练的目标(target),在训练中使用rpn_labels作为训练的目标
gt_box的唯一作用就在于判断产生的共A*W*H个bbox哪些属于前景,哪些不属于,将那些属于前景的bbox设置为训练目标去训练rpn_cls_score_reshape。
在test中,正好相反,训练好的网络会产生一个rpn_cls_score_reshape,它可以转化成一个[1,A,height,width]的矩阵
#proposal_layer 产生的[1,A,height,width]个bbox哪些属于前景,哪些属于背景。我们会把属于前景的挑出来,
按照得分排序,取前300个输入后面的fc层,fc层会产生两个输出:
一个是cls_score,用于判断bbox中物体的类型
另一个是bbox_pred,用于微调bbox,使其向gt_box进一步靠近(由于bbox都是从anchor产生的,他们不会和gt_box重合,还需要进一步微调)

rpn_bbox_targets
根据 rpn_labels 我们已经可以挑选出300个bbox,这些bbox都是在[1,W,H,A*4]中根据与gt_box的重合程度挑选出来的,与gt_box并不相同,有一些偏差,这些偏差表示为[dx,dy,dw,dh],这就是rpn_bbox_targets。
因为传进后面全卷积网络的是bbox,与gt_boxes不完全重合,为了使最终的结果更加接近gt_box,还需要进一步微调
而全卷积层的输出bbox_pred就是用于微调的,rpn_bbox_targets就是它训练的目标(target)
损失函数的计算:

# RPN
# classification loss
rpn_cls_score = tf.reshape(self.net.get_output('rpn_cls_score_reshape'),[-1,2])
rpn_label = tf.reshape(self.net.get_output('rpn-data')[0],[-1])
rpn_cls_score = tf.reshape(tf.gather(rpn_cls_score,tf.where(tf.not_equal(rpn_label,-1))),[-1,2])
rpn_label = tf.reshape(tf.gather(rpn_label,tf.where(tf.not_equal(rpn_label,-1))),[-1])
rpn_cross_entropy = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=rpn_cls_score, labels=rpn_label))

# bounding box regression L1 loss
rpn_bbox_pred = self.net.get_output('rpn_bbox_pred')
rpn_bbox_targets = tf.transpose(self.net.get_output('rpn-data')[1],[0,2,3,1])
rpn_bbox_inside_weights = tf.transpose(self.net.get_output('rpn-data')[2],[0,2,3,1])
rpn_bbox_outside_weights = tf.transpose(self.net.get_output('rpn-data')[3],[0,2,3,1])

rpn_smooth_l1 = self._modified_smooth_l1(3.0, rpn_bbox_pred, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights)
rpn_loss_box = tf.reduce_mean(tf.reduce_sum(rpn_smooth_l1, reduction_indices=[1, 2, 3]))

其余代码:

# Loss of rpn_cls & rpn_boxes

(self.feed('rpn_conv/3x3')
     .conv(1,1,len(anchor_scales)*3*4, 1, 1, padding='VALID', relu = False, name='rpn_bbox_pred'))

#========= RoI Proposal ============
(self.feed('rpn_cls_score')
     .reshape_layer(2,name = 'rpn_cls_score_reshape')
     .softmax(name='rpn_cls_prob'))

(self.feed('rpn_cls_prob')
     .reshape_layer(len(anchor_scales)*3*2,name = 'rpn_cls_prob_reshape'))

(self.feed('rpn_cls_prob_reshape','rpn_bbox_pred','im_info')
     .proposal_layer(_feat_stride, anchor_scales, 'TRAIN',name = 'rpn_rois'))

(self.feed('rpn_rois','gt_boxes')
     .proposal_target_layer(n_classes,name = 'roi-data'))


#========= RCNN ============
(self.feed('conv5_3', 'roi-data')
     .roi_pool(7, 7, 1.0/16, name='pool_5')
     .fc(4096, name='fc6')
     .dropout(0.5, name='drop6')
     .fc(4096, name='fc7')
     .dropout(0.5, name='drop7')
     .fc(n_classes, relu=False, name='cls_score')
     .softmax(name='cls_prob'))

(self.feed('drop7')
     .fc(n_classes*4, relu=False, name='bbox_pred'))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值