安全多方计算(SMPC)学习笔记

3 篇文章 1 订阅
2 篇文章 0 订阅

论文:《Secure Multiparty Computation》
作者:Yehuda Lindell

SMPC的基本概念

  • 概念:SMPC协议使多个参与方能够使用各自私有的输入,计算一个联合函数,并且他们除了计算结果什么也得不到。

  • SMPC协议的目标:使多个参与方以安全的方式,共同执行分布式的计算任务。

  • SMPC协议中的角色:

    1. 安全的参与方(honest parties)
    2. 攻陷的参与方(corrrupted parties)
  • SMPC的两种场景:

    1. 理想环境(ideal)
    2. 真实环境(real)
  • SMPC协议的重要需求特性:

    1. 隐私性 privacy
    2. 正确性 correctness
    3. 输入独立性 independence of inputs
    4. 输出可达性 guaranteed output delivery
    5. 公平性 fairness
  • SMPC模型的其他关注点

    • 敌手(Adversarial power)的模型——被动/主动攻击?
      • 允许敌对的行为(Allowed adversarial behaviour)——与敌手的类型(3种)有关
        • 半诚实敌手(Semi-honest adversaries)
        • 恶意敌手(Malicious adversaries)
        • 秘密敌手(Covert adversaries)
      • 腐化策略(Corruption strategy)——关注参与方何时/如何被腐化?
        • 静态腐化(Corruption strategy)
        • 适应性腐化(Adaptive corruption model)
        • 主动腐化(Proactive security model)
    • 模块化顺序和并发组合(Modular sequential and concurrent composition)

      考虑MPC协议与其他协议同时运行时的安全性

  • SMPC协议中明确的含义

    1. The ideal model and using MPC in practice
    2. Any inputs are allowed
    3. MPC secures the process, but not the output
  • SMPC的可行性

    理论上,任何分布式的计算任务都存在安全的多方协议

    1. 当攻陷的参与方的数量少于参与方总数的1/3时:
      安全的多方协议能够对任意功能的函数,做到公平性及输出可达。这在同步点对点网络和认证信道下,是计算安全的;如果信道同时是秘密的,则也是信息论安全的。
    2. 当攻陷的参与方的数量少于参与方总数的1/2时:
      安全的多方协议能够对任意功能的函数,做到公平性及输出可达。这在参与方具备接入广播信道能力的条件下,是计算安全的。
    3. 当攻陷的参与方的数量大于等于参与方总数的1/2时:
      安全的多方协议能够做到公平性及输出可达。

SMPC的相关技术

秘密分享技术

  • Shamir Secret Sharing
    秘密共享方案解决了销售商希望在n个参与方之间共享秘密s的问题,这样t+1或更多参与方的任何子集都可以重构秘密,但t或更少的参与方的子集不能学习关于秘密的任何东西。
    称之为 (t+1)-out-of-n-threshold secret-sharing scheme

Honest-Majority MPC with Secret Sharing

Private Set Intersection

Threshold Cryptography

Dishonest-Majority MPC

Efficient and Practical MPC

掷硬币协议(Coin-tossing Protocol)

在这里插入图片描述

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
安全多方计算(Secure Multi-Party Computation,简称SMPC)和联邦学习(Federated Learning)都是隐私保护的机器学习方法,它们可以结合起来进一步提高隐私保护的效果。 SMPC是一种保证参与方隐私的计算方法,它允许多方协作完成计算任务,但不会暴露各方的输入数据。SMPC的实现方式包括基于加密算法的方法、基于秘密共享的方法等。在机器学习中,SMPC可以用于保护模型训练过程中的隐私数据,比如在训练神经网络时,各方可以共同参与计算,但不会直接共享数据。 联邦学习是一种分布式机器学习方法,它允许多个设备或数据中心在不共享原始数据的情况下训练模型。在联邦学习过程中,每个参与方将本地的模型更新上传到中央服务器,然后中央服务器将这些更新整合起来得到新的全局模型,并将更新后的全局模型下发给各个参与方。联邦学习的优点是可以避免数据共享带来的隐私风险,同时也可以利用分布式计算的优势提高效率。 将SMPC和联邦学习相结合,可以在保护隐私的前提下,更好地利用分布式计算资源,提高模型训练的效率和准确度。具体来说,可以采用联邦学习的方式进行模型训练,而在模型训练过程中使用SMPC来保护各方的隐私数据。这样既能确保各方数据的隐私性,又能充分利用各方的计算资源,提高模型训练的效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值