前言
以前写过一篇关于二次方程根的分布问题的博文,感觉思路混乱,也不想再修改,故重新开一篇博文探讨这个问题,初次尝试用零点存在定理来分析二次方程根的分布,自编题目,有待商榷,希望多提宝贵意见。
典例分析
为了降低思维的难度,我们首先看这个比较特殊的例子,
已知函数 f ( x ) = − x 2 + 2 m x + 2 − 3 m f(x)=-x^2+2mx+2-3m f(x)=−x2+2mx+2−3m,求解以下问题:
分析:为了便于利用零点存在定理解决以下问题,我们先分析函数“形”上具有的特点,图象是开口向下的抛物线,具有对称性,对称轴为 x x x = = = m m m,有最大值为 f ( x ) max f(x)_{\max} f(x)max = = = f ( m ) f(m) f(m) = = = m 2 m^2 m2 − - − 3 m 3m 3m + + + 2 2 2,同时还有两个非常容易被人忽略的隐含信息,或者没有有效利用的条件,即 f ( − ∞ ) f(-\infty) f(−∞) < < < 0 0 0, f ( + ∞ ) f(+\infty) f(+∞) < < < 0 0 0,这样的写法虽然有些欠妥当,但是在利用零点存在定理时非常有用,能帮助我们快速思考,解决问题。
(01) . 若函数有两个零点,求实数 m m m 的取值范围;
分析:只需要函数对称轴处的函数值大于零即可,即 f ( m ) > 0 f(m)>0 f(m)>0具体解释, f ( − ∞ ) f(-\infty) f(−∞) < < < 0 0 0,且 f ( m ) > 0 f(m)>0 f(m)>0,故在 ( − ∞ , m ) (-\infty,m) (−∞,m) 内必有一个变号零点,同理, f ( + ∞ ) f(+\infty) f(+∞) < < < 0 0 0,且 f ( m ) > 0 f(m)>0 f(m)>0,故在 ( m , + ∞ ) (m,+\infty) (m,+∞) 内必有一个变号零点,在初中我们常用的求解思维是 Δ > 0 \Delta>0 Δ>0 . .
即 f ( m ) f(m) f(m) = = = m 2 m^2 m2 − - − 3 m 3m 3m + + + 2 > 0 2>0 2>0,解得 m < 1 m<1 m<1 或 m > 2 m>2 m>2;
(02) . 若函数有一个零点,求实数 m m m 的取值范围;
分析:只需要函数对称轴处的函数值等于零即可,即 f ( m ) = 0 f(m)=0 f(m)=0具体解释, f ( − ∞ ) f(-\infty) f(−∞) < < < 0 0 0,且 f ( m ) = 0 f(m)=0 f(m)