用零点存在定理解决二次方程根的分布

前言

以前写过一篇关于二次方程根的分布问题的博文,感觉思路混乱,也不想再修改,故重新开一篇博文探讨这个问题,初次尝试用零点存在定理来分析二次方程根的分布,自编题目,有待商榷,希望多提宝贵意见。

典例分析

为了降低思维的难度,我们首先看这个比较特殊的例子,

已知函数 f ( x ) = − x 2 + 2 m x + 2 − 3 m f(x)=-x^2+2mx+2-3m f(x)=x2+2mx+23m,求解以下问题:

分析:为了便于利用零点存在定理解决以下问题,我们先分析函数“形”上具有的特点,图象是开口向下的抛物线,具有对称性,对称轴为 x x x = = = m m m,有最大值为 f ( x ) max ⁡ f(x)_{\max} f(x)max = = = f ( m ) f(m) f(m) = = = m 2 m^2 m2 − - 3 m 3m 3m + + + 2 2 2,同时还有两个非常容易被人忽略的隐含信息,或者没有有效利用的条件,即 f ( − ∞ ) f(-\infty) f() < < < 0 0 0 f ( + ∞ ) f(+\infty) f(+) < < < 0 0 0,这样的写法虽然有些欠妥当,但是在利用零点存在定理时非常有用,能帮助我们快速思考,解决问题。

(01) . 若函数有两个零点,求实数 m m m 的取值范围;

分析:只需要函数对称轴处的函数值大于零即可,即 f ( m ) > 0 f(m)>0 f(m)>0具体解释, f ( − ∞ ) f(-\infty) f() < < < 0 0 0,且 f ( m ) > 0 f(m)>0 f(m)>0,故在 ( − ∞ , m ) (-\infty,m) (,m) 内必有一个变号零点,同理, f ( + ∞ ) f(+\infty) f(+) < < < 0 0 0,且 f ( m ) > 0 f(m)>0 f(m)>0,故在 ( m , + ∞ ) (m,+\infty) (m,+) 内必有一个变号零点,在初中我们常用的求解思维是 Δ > 0 \Delta>0 Δ>0 . .

f ( m ) f(m) f(m) = = = m 2 m^2 m2 − - 3 m 3m 3m + + + 2 > 0 2>0 2>0,解得 m < 1 m<1 m<1 m > 2 m>2 m>2

(02) . 若函数有一个零点,求实数 m m m 的取值范围;

分析:只需要函数对称轴处的函数值等于零即可,即 f ( m ) = 0 f(m)=0 f(m)=0具体解释, f ( − ∞ ) f(-\infty) f() < < < 0 0 0,且 f ( m ) = 0 f(m)=0 f(m)=0,且 f ( + ∞ ) f(+\infty) f(+) < < < 0 0 0,故在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 内必有一个不变号零点 x = m x=m x=m,在初中我们常用的求解思维是 Δ = 0 \Delta=0 Δ=0 . .

f ( m ) f(m) f(m) = = = m 2 m^2 m2 − - 3 m 3m 3m + + + 2 = 0 2=0 2=0,解得 m = 1 m=1 m=1 m = 2 m=2 m=2

(03) . 若函数没有零点,求实数 m m m 的取值范围;

分析:只需要函数对称轴处的函数值小于零即可,即 f ( m ) < 0 f(m)<0 f(m)<0具体解释, f ( x ) max ⁡ = f ( m ) < 0 f(x)_{\max}=f(m)<0 f(x)max=f(m)<0,故方程 f ( x ) = 0 f(x)=0 f(x)=0 无解,在初中我们常用的求解思维是 Δ < 0 \Delta<0 Δ<0 . .

f ( m ) f(m) f(m) = = = m 2 m^2 m2 − - 3 m 3m 3m + + + 2 < 0 2<0 2<0,解得 1 < m < 2 1<m<2 1<m<2

(04) . 若函数恰有一个零点为 x = 0 x=0 x=0,求实数 m m m 的取值范围;

分析: f ( 0 ) = 0 f(0)=0 f(0)=0,即 2 − 3 m = 0 2-3m=0 23m=0,解得 m = 2 3 m=\cfrac{2}{3} m=32

(05) . 若方程 f ( x ) = 0 f(x)=0 f(x)=0有两个正数解,求实数 m m m 的取值范围;

分析: { f ( 0 ) < 0 f ( m ) > 0 m > 0 [ 对称轴在 y 轴右侧 ] \left\{\begin{array}{l}{f(0)<0}\\{f(m)>0}\\m>0[对称轴在y轴右侧]\end{array}\right.\quad f(0)<0f(m)>0m>0[对称轴在y轴右侧]

解得 2 3 < m < 1 \cfrac{2}{3}<m<1 32<m<1 m > 2 m>2 m>2

(06) . 若方程 f ( x ) = 0 f(x)=0 f(x)=0有两个负数解,求实数 m m m 的取值范围;

分析: { f ( 0 ) < 0 f ( m ) > 0 m < 0 [ 对称轴在 y 轴左侧 ] \left\{\begin{array}{l}{f(0)<0}\\{f(m)>0}\\m<0[对称轴在y轴左侧]\end{array}\right.\quad f(0)<0f(m)>0m<0[对称轴在y轴左侧]

解得 m ∈ ∅ m\in\varnothing m

(07) . 若方程 f ( x ) = 0 f(x)=0 f(x)=0有两个解,一正一负,即一个大于 0 0 0,一个小于 0 0 0,求实数 m m m 的取值范围;

分析: f ( 0 ) > 0 f(0)>0 f(0)>0

解得 m < 2 3 m<\cfrac{2}{3} m<32

(08) . 若方程 f ( x ) = 0 f(x)=0 f(x)=0有两个解,一个大于 2 2 2,一个小于 2 2 2,求实数 m m m 的取值范围;

分析:仿上 f ( 2 ) > 0 f(2)>0 f(2)>0

解得 m > 2 m>2 m>2

(09) . 若方程 f ( x ) = 0 f(x)=0 f(x)=0有两个解,一正一零,求实数 m m m 的取值范围;

分析: { f ( 0 ) = 0 f ( m ) > 0 m > 0 \left\{\begin{array}{l}{f(0)=0}\\{f(m)>0}\\m>0\end{array}\right.\quad f(0)=0f(m)>0m>0

解得 m = 2 3 m=\cfrac{2}{3} m=32

(10) . 若方程 f ( x ) = 0 f(x)=0 f(x)=0有两个解,一负一零,求实数 m m m 的取值范围;

分析: { f ( 0 ) = 0 f ( m ) > 0 m < 0 \left\{\begin{array}{l}{f(0)=0}\\{f(m)>0}\\m<0\end{array}\right.\quad f(0)=0f(m)>0m<0

解得, m ∈ ∅ m\in\varnothing m

(11) . 若方程 f ( x ) = 0 f(x)=0 f(x)=0有两个解,都在 2 2 2 的左侧,求实数 m m m 的取值范围;

分析: { f ( m ) > 0 f ( 2 ) < 0 m < 2 \left\{\begin{array}{l}{f(m)>0}\\{f(2)<0}\\m<2\end{array}\right.\quad f(m)>0f(2)<0m<2

解得 m < 2 m<2 m<2

(12) . 若方程 f ( x ) = 0 f(x)=0 f(x)=0有两个解,都在 2 2 2 的右侧,求实数 m m m 的取值范围;

分析: { f ( m ) > 0 f ( 2 ) < 0 m > 2 \left\{\begin{array}{l}{f(m)>0}\\{f(2)<0}\\m>2\end{array}\right.\quad f(m)>0f(2)<0m>2

解得, m ∈ ∅ m\in\varnothing m

(13) . 若方程 f ( x ) = 0 f(x)=0 f(x)=0有两个解,都在 ( 0 , 3 ) (0,3) (0,3) 内,求实数 m m m 的取值范围;

分析: { f ( 0 ) < 0 f ( m ) > 0 f ( 3 ) < 0 0 < m < 3 \left\{\begin{array}{l}{f(0)<0}\\{f(m)>0}\\{f(3)<0}\\0<m<3\end{array}\right.\quad f(0)<0f(m)>0f(3)<00<m<3

解得 2 3 < m < 1 \cfrac{2}{3}<m<1 32<m<1 2 < m < 7 3 2<m<\cfrac{7}{3} 2<m<37

或解: Δ ≥ 0 \Delta\geq 0 Δ0 0 < x 1 + x 2 < 6 0<x_1+x_2<6 0<x1+x2<6[此条件已经能限制对称轴了],且 ( x 1 − 3 ) ( x 2 − 3 ) > 0 (x_1-3)(x_2-3)>0 (x13)(x23)>0

(14) . 若方程 f ( x ) = 0 f(x)=0 f(x)=0有两个解,一个在 ( 0 , 1 ) (0,1) (0,1) 内,另一个在 ( 2 , 3 ) (2,3) (2,3) 内,求实数 m m m 的取值范围;

分析: { f ( 0 ) < 0 f ( 1 ) > 0 f ( 2 ) > 0 f ( 3 ) < 0 \left\{\begin{array}{l}{f(0)<0}\\{f(1)>0}\\{f(2)>0}\\{f(3)<0}\end{array}\right.\quad f(0)<0f(1)>0f(2)>0f(3)<0

(15) . 若方程 f ( x ) = 0 f(x)=0 f(x)=0有两个解,一个在 ( 0 , 1 ) (0,1) (0,1) 内,另一个在 ( 1 , 3 ) (1,3) (1,3) 内,求实数 m m m 的取值范围;

分析: { f ( 0 ) < 0 f ( 1 ) > 0 f ( 3 ) < 0 \left\{\begin{array}{l}{f(0)<0}\\{f(1)>0}\\{f(3)<0}\end{array}\right.\quad f(0)<0f(1)>0f(3)<0

抽象概括

对于一般的二次函数 f ( x ) = a x 2 + b x + c ( a ≠ 0 ) f(x)=ax^2+bx+c(a\neq 0) f(x)=ax2+bx+c(a=0) 的零点问题,需要考虑更多因素,比如开口方向,对称轴,端点值的正负等等。

有空再编辑。

  • 9
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值