代数方程根在复平面上分布的几何证明

52 篇文章 1 订阅
22 篇文章 0 订阅

人们在代数方程根的研究主要由于三个方向:

1>关于根的存在性问题.

 2>不求解方程而按照它的系数去探索它的根的一些性质,例如它是否具有实数根,有多少个,几个正的几个负的等等问题.

 3>关于方程的根的近似计算问题.

第一个问题,由于伽罗瓦的横空出世而获得彻底解决,并由此发展出了近世代数和群论用来解决更一般性问题.由于计算机的发展,第三个问题也得到很好解决,牛顿法在例如matlab, octave,python等工具中得到广泛应用,用这些方法的工具可以很快的解出高次方程的数值解.

关于第二个根分布的问题,在控制科学里面得到广泛应用,在控制系统里面,传递函数的根轨迹是控制系统是否稳定的重要依据,现在还依稀记得当时学习自动控制原理的时候,绘制传递函数的根轨迹的问题.但当时体会不到和代数方程里面的联系原来有这么深刻,最近看了基本关于这个方向的扫盲书,有些新的,记录下来,并且尝试用数形结合的方式说明,这样更直观,容易说清楚理论的东西究竟在现实中有什么意义.

多项式的形式和导数:

 对于形如

 f(x)=a_0x^n+a_1x^{n-1}+\cdots+a_{n-1}x+a_n. \quad a_0 \quad a_1 \quad \cdots \quad a_n \in C \quad x\in C

的多项式,在二维笛卡尔坐标系中用一条曲线表示,参照二次函数的叫法,可以称为n阶抛物线,首先,对于任意实的x,显然有且仅有一个确定的实数

y=f(x)

所以函数图像可以左右延伸到任意远的地方,而且f(x)f'(x)x的变化而连续变化,即没有跳跃和突变,图像没有尖峰,所以f(x)的图像是光滑的曲线,对于绝对值很大的x来说,第一项

a_0x^n

的绝对值大于其余一切项的和的绝对值,因为他们都具有较低的次数,所以,如果n是偶数,当a_0>0时,f(x)的图像就向左右方的高处无线延伸,a_0<0就向低处.

 反之,如果n是奇数,则根据a_0的正负不同,左右两边各向对角方向伸展.

所有多项式在定义与域内都可导的.并导数也是一个多项式:

 \\ f'(x)=na_0x^{n-1}+(n-1)a_1x^{n-2}+\cdots+2a_{n-2}x+a_{n-1}

例如对于十次多项式:

y=x^{10}+a*x^9+b*x^8+c*x^7+d*x^6+m*x^5+f*x^4+g*x^3+h*x^2+n*x^1+j

其图像为:

绿色曲线是原多项式,紫色曲线是导数多项式.

不要看到原多曲线有尖峰就断言它不可导,实际上放大看,在尖峰处,函数图像斜率并没有突变,还是很平滑的.根据此图像,我们可以得到结论:

原多项式有四个实根,两个正根和两个负根

导多项式有五个根,两个负根,三个正根.

实际上不满足这里讨论的多项式所有根都是实的条件,所以出现了导多项式实根数大于原多项式的实根数,猜测可能是经过求导运算,高维空间的复数根投影到了三维空间里面,成了它的一个实数根.:)

多项式的单根和重根:

对于多项式:

f(x)=a_0x^n+a_1x^{n-1}+\cdots+a_{n-1}x+a_n. \quad a_0 \quad a_1 \quad \cdots \quad a_n \in C \quad x\in C

如果a是一个根,那么

(x-a)

一定可以被f(x)多项式整除,更进一步,如果f(x)不能被

(x-a)^2

整除,那么a式多项式f(x)的单根,一般的说法,如果多项式f(x)能被

(x-a)^k

整除,而不能被

(x-a)^{k+1}

那么,数a叫做多项式的k重根.

例如:

x=2是方程

x^2-4x+4=(x-2)(x-2)=(x-2)^2

的2重根,而是方程

x^2-3x+2=(x-2)(x-1)=(x-2)(x-1)

的单重根.结论很明显.

在代数方程上,k重根应当理解为k个相等的根,而不能认为是一个根.这样理解,就可以很自然的把方程的根数和多项式的次数联系起来.如果约定没一个根所算的次数就是它的重数,那由于每一个n次多项式可以分解为n个一次因子的乘积,多项式的根数就等于它的次数.

多项式的导数的根:

有两条规则:

1.多项式的单根不是它导数的根.

2.多项式的重根是它的导数的根并且重数减1.

设x=a是多项式f(x)的k重根,则下面的(x-a)必定不能被f_1(x)整除.

f(x)=(x-a)^kf_1(x)

求导得:

\\f'(x)=k(x-a)^{k-1}f_1(x)+(x-a)^kf'_1(x)=(x-a)^{k-1}(kf_1(x)+(x-a)f'_1(x)) =\\(x-a)^{k-1}F(x)

由于

kf_1(x)

项的存在,F(x)必定不能被(x-a)整除.

所以,如果

x=a是多项式方程

f(x)=0

的k重根,那么同样x=a是f'(x)的 k-1重根.

所以,当k=1和k>1时,上面的两条结论得到证明.

下面的讨论仅限于方程的一切根都是实根的情况.

多项式的导数的根与原函数的关系:

假如方程的一切根都是实根,则可以应用罗尔定理,下面图像是方程:

f(x)=(x+1.5)(x+1.14)(x+0.8)(x-0.5)(x-2.2)(x-2.7)(x-3.3)

的图像,它的所有根都是实根.

则根据罗尔定理:

罗尔定理:假设函数f在闭区间[a,b]内连续,在开区间[a,b]内可导,如果f(a)=f(b),那么在开区间(a,b)内至少存在一点c,使得,也就是说c是f'(x)的根.

由于

f(-1.5)=f(-1.14)=f(-0.8)=f(0.5)=f(2.2)=f(2.7)=f(3.3)=0

所以一定存在

f'(c_1)=f'(c_2)=f'(c_3)=f'(c_4)=f'(c_5)=f'(c_6)=0

其中:

\\-1.5<c_1<-1.14<c_2<-0.8<c_3<0.5<c_4<2.2<c_5<2.7<c_6<3.3

观察函数图像,的确是这样,注意图像中Extremum(f)的返回值

\\c_1=-1.37\\c_2=-0.96\\c_3=-0.05\\c_4=1.34\\c_5=2.46\\c_6=3.09

由于f'(x)仅有6次,而我们已经找到了它的六个根,所以这六个实根是它的全部的根.

f(x)最高次7次,有7个实根.

f'(x)最高次6次,有6个实根.

所以不出意外,后面可以继续往下写:

f''(x)最高次5次,有5个实根.

f^3(x)最高次4次,有4个实根.

f^4(x)最高次3次,有3个实根.

f^5(x)最高次2次,有2个实根.

f^6(x)最高次1次,有1个实根.

f^7(x)是0次,为常数7!.

f''(x)的图形(绿色)与f'(x):五个根

f^3(x)的图形与f''(x):四个根

f^4(x)的图形与f^3(x):三个根

f^5(x)的图形与f^4(x):两个根

f^6(x)的图形与f^5(x):一次直线,1个根

f^7(x)的图形与f^6(x):常数7!=5040.无根

可见,猜测是对的!

更一般的结论是:

如果实数a与b是实系统多项式的根,那么在a与b之前有一实数c存在,而且它是导数多项式的根,这是罗尔定理的另一种描述,根据这个定理,可以得到推论,对于多项式

f(x)=a_0x^n+a_1x^{n-1}+\cdots+a_{n-1}x+a_n. \quad a_0 \quad a_1 \quad \cdots \quad a_n \in C \quad x\in C,如果它的一切根都是实的,那么它的导数的一切根也是实的,在f(x)的相邻两根之间有f'(x)的一个根,并且是一个单根.

这是因为设

x_1<x_2<\cdots<x_k

f(x)的所有根,它们分别具有重数

m_1,m_2,\cdots,m_k

则必然

m_1+m_2+\cdots+m_k=n

根据前面的导数重根的结论,导数有根

x_1<x_2<\cdots<x_k

且其重数为:

m_1-1,m_2-1,\cdots,m_k-1

所以一共有

m_1-1+m_2-1+\cdots+m_k-1=n-k

个根,由于f'(x)是一次的,按道理应该有

n-1

个根,那还差

(n-1)-(n-k)=k-1

个根,这些根从哪里来呢?很显然,再一次应用罗尔定理,还有至少有根

y_1,y_2,\cdots,y_{k-1}

分别在f(x)相邻两根的区间:

(x_1,x_2)\quad(x_2,x_3)\quad \cdots\quad (x_{k-1},x_k)

里面.这样,总根数:

m_1-1+m_2-1+\cdots+m_k-1 +(k-1)=n-1

满足代数基本定理根个数等于次数的条件,所以我们找到了所有的根,所有根都是实数,且除了重根外,其余单k-1个单根分布在k-1个区间里面,根据抽屉原理,每个区间最多只有一个,不可能有多个,所有有且仅有的条件也得到证明,反映到几何上就是这样的,多项式函数和实轴的两个交点(两个解)之间的图形,只能有一个局部极值,通俗点,两个零点之间的函数图形,只能有一个山包,或者一个山谷,不可能有两个谷或者两个包。

用图形表示如下:

进一步,根据罗尔定理,不但可以确定导函数多项式根的个数,还可以据此判断正根的个数,如果多项式f(x)的一切根都是实的,并且其中有p个是正的,那么f'(x)有p个或者p-1个正根.

实际上,设:

x_1<x_2<\cdots<x_k

是多项是f(x)的一切正根,它们分别具有重数

m_1,m_2,\cdots,m_k

则:

m_1+m_2+\cdots+m_k=p

导数f'(x)将具有这些正根:

x_1<x_2<\cdots<x_k,分别具有重数m_1-1,m_2-1,\cdots,m_k-1, 和y_1,y_2,\cdots,y_{k-1},分别位于区间(x_1,x_2)\quad(x_2,x_3)\quad \cdots\quad (x_{k-1},x_k)内,是单根,另外,还有可能有一个单根

y_0位于区间(x_0,x_1)之内,此处x_0是f(x)最大的负根或者0根.因此,f'(x)正根数应该是:

m_1-1+m_2-1+\cdots+m_k-1 +(k-1)=p-1

或者

m_1-1+m_2-1+\cdots+m_k-1 +(k-1)+1=p

后者是考虑到y_0的存在.

比如,下图原函数正根数有四个,导函数正根数有三个.注意y_3没有到正轴这边来.

实际上,通过微调多项式系数,可以将y_3调整为正的,如下图,将x_3从上图中的0.8调整到下图中的0.4,会发现y_3变成了正的,这样,导数多项式的正跟数从三个变成四个了,和原函数的正根数目相同,所以上面的结论得到实践证明.

正根的规律讨论清楚了,负根自然也就清楚了,他们的和等于多项式次数.

如果是从事控制系统相关的专业和行业,应该对控制系统的根轨迹方法很熟悉,实际上,跟轨迹法的本质就是求解代数方程根的分布问题,举个例子,对于如下的控制系统:

开环传递函数是:

G(s)=\frac{K(0.5s+1)}{0.5s^2+s+1}

传递框图:

那么它的闭环传递函数为:

\\F(s)=\frac{G(s)}{1+G(s)}=\frac{\frac{K(0.5s+1)}{0.5s^2+s+1}}{1+\frac{K(0.5s+1)}{0.5s^2+s+1}} = \frac{K(0.5s+1)}{0.5s^2+s+1+K(0.5s+1)}= \frac{K(0.5s+1)}{0.5s^2+(0.5K+1)s+1+K}=\\ \frac{K(s+2)}{s^2+(K+2)s+2+2K}

特征多项式:

T(s)=s^2+(K+2)s+2+2K

s=x+yi

则:

\\T(s)=(x+yi)^2+(K+2)(x+yi)+2+2K=\\(x^2-y^2+Kx+2x+2+2K)+(2xy+Ky+2y)i

则M曲面方程是:

M(x,y)=\sqrt{(x^2-y^2+Kx+2x+2+2K)^2+(2xy+Ky+2y)^2}

其图像为:

K=0:

K=5.5

K=6.4

随着开环增益K的变化,M曲面在复平面上扫过的轨迹就是根轨迹,和经典画法画出来的是一致的。

kaihuanfenzi=[1,2];
kaihuanfenmu=[1,2,2];
sys=tf(kaihuanfenzi,kaihuanfenmu);
rlocus(sys);
axis([-8 2 -2 2]);

结束!

  • 7
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

papaofdoudou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值