等差数列的概念和性质01

相关概念

  • 刻画等差数列的几种语言

[自然语言]:从第二项起,每一项与它的前一项的差等于同一个常数的数列称为等差数列,这个常数称为公差,常用 d d d来表示。

[符号语言]:

a n − a n − 1 = d ( n ⩾ 2 , n ∈ N ∗ , d 为常数 ) a_n-a_{n-1}=d(n\geqslant 2,n\in N^*,d为常数) anan1=d(n2nNd为常数)

或者表示为
a n + 1 − a n = d ( n ⩾ 1 , n ∈ N ∗ , d 为常数 ) a_{n+1}-a_n=d(n\geqslant 1,n\in N^*,d为常数) an+1an=d(n1nNd为常数)

[图形语言]:以 a n = 2 n + 1 a_n=2n+1 an=2n+1为例,

  • 等差中项:若 a , A , b a,A,b aAb成等差数列,则 A A A称为 a a a b b b的等差中项,即 A = a + b 2 A=\cfrac{a+b}{2} A=2a+b,任意两个实数必有等差中项,但任意两个实数不一定有等比中项。
  • 通项公式 a n a_n an a n = a 1 + ( n − 1 ) d a_n=a_1+(n-1)d an=a1+(n1)d,其推广式: a n = a m + ( n − m ) d a_n=a_m+(n-m)d an=am+(nm)d1
  • n n n项和公式 S n S_n Sn S n = n ( a 1 + a n ) 2 = n a 1 + n ( n − 1 ) ⋅ d 2 S_n=\cfrac{n(a_1+a_n)}{2}=na_1+\cfrac{n(n-1)\cdot d}{2} Sn=2n(a1+an)=na1+2n(n1)d,注意这两个公式是等价的。

相关性质

①等差数列中,若 m + n = p + q = 2 k ( m , n , p , q , k ∈ N ∗ ) m+n=p+q=2k(m,n,p,q,k\in N^*) m+n=p+q=2k(mnpqkN),则 a m + a n = a p + a q = 2 a k a_m+a_n=a_p+ a_q=2a_k am+an=ap+aq=2ak

②若数列 { a n } \{a_n\} {an} { b n } \{b_n\} {bn}[前提是项数相同]是等差数列,则 { λ a n } \{\lambda a_n\} {λan} { a n + b n } \{a_n+b_n\} {an+bn} { a n − b n } \{a_n-b_n\} {anbn} { p a n + q b n } \{pa_n+qb_n\} {pan+qbn}( p , q p,q pq为常数)仍然是等差数列;2解释

③在等差数列 { a n } \{a_n\} {an}中,等距离取出若干项也构成一个等差数列,即 a m , a m + k , a m + 2 k , a m + 3 k , ⋯ a_m,a_{m+k},a_{m+2k},a_{m+3k},\cdots amam+kam+2kam+3k为等差数列,公差为 k d kd kd3

④等差数列 { a n } \{a_n\} {an}的前 n n n项和为 S n S_n Sn,则 S n , S 2 n − S n , S 3 n − S 2 n , ⋯ , S_n,S_{2n}-S_n,S_{3n}-S_{2n},\cdots , SnS2nSnS3nS2n仍成等差数列,但是同样的刻画形式,到了等比数列中,就有了一定的限制。

⑤等差数列的求和公式的应用:

S 2 n − 1 = ( 2 n − 1 ) ⋅ a n S_{2n-1}=(2n-1)\cdot a_n S2n1=(2n1)an S 2 n = n ( a 1 + a 2 n ) = ⋯ = n ( a n + a n + 1 ) S_{2n}=n(a_1+a_{2n})=\cdots=n(a_n+a_{n+1}) S2n=n(a1+a2n)==n(an+an+1)4

n n n为偶数,则 S 偶 − S 奇 = n d 2 S_{偶}-S_{奇}=\cfrac{nd}{2} SS=2nd

n n n为奇数,则 S 奇 − S 偶 = a 中 S_{奇}-S_{偶}=a_{中} SS=a(中间项);

⑥等差数列的单调性,从函数的角度理解和认知很容易。

a n = a 1 + ( n − 1 ) d = d ⋅ n + ( a 1 − d ) a_n=a_1+(n-1)d=d\cdot n+(a_1-d) an=a1+(n1)d=dn+(a1d)

a n = f ( n ) a_n=f(n) an=f(n) n n n的仿一次函数,其单调性完全取决于公差 d d d

d > 0 d>0 d>0 a n a_n an单调递增;

d < 0 d<0 d<0 a n a_n an单调递减;

d = 0 d=0 d=0 a n a_n an为常数列,无单调性;

⑦若数列 { a n } \{a_n\} {an}为等差数列,则数列 { S n n } \{\cfrac{S_n}{n}\} {nSn}也为等差数列;

分析:由于等差数列的 S n = n a 1 + n ( n − 1 ) ⋅ d 2 = d 2 n 2 + ( a 1 − d 2 ) n S_n=na_1+\cfrac{n(n-1)\cdot d}{2}=\cfrac{d}{2}n^2+(a_1-\cfrac{d}{2})n Sn=na1+2n(n1)d=2dn2+(a12d)n

d 2 = A \cfrac{d}{2}=A 2d=A ( a 1 − d 2 ) = B (a_1-\cfrac{d}{2})=B (a12d)=B,则可以表示为 S n = A n 2 + B n S_n=An^2+Bn Sn=An2+Bn

S n S_n Sn是关于 n n n仿二次函数 d = 0 d=0 d=0,则 A = 0 A=0 A=0,此时 S n S_n Sn为一次函数,对应数列为常数列 \quad ,且其常数项为零;

S n n = A n + B \cfrac{S_n}{n}=An+B nSn=An+B[此时为仿一次函数],则数列 { S n n } \{\cfrac{S_n}{n}\} {nSn}也为等差数列;

⑧两个等差数列 { a n } \{a_n\} {an} { b n } \{b_n\} {bn}的前 n n n项和分别为 S n S_n Sn T n T_n Tn,则有 S 2 n − 1 T 2 n − 1 = a n b n \cfrac{S_{2n-1}}{T_{2n-1}}=\cfrac{a_n}{b_n} T2n1S2n1=bnan5

⑨注意 a n a_n an 类与 S n S_n Sn 类的相互转化,以便于使用等差数列的对应性质;

比如, S 3 = a 1 + a 2 + a 3 S_3=a_1+a_2+a_3 S3=a1+a2+a3 S 6 − S 3 = a 4 + a 5 + a 6 S_6-S_3=a_4+a_5+a_6 S6S3=a4+a5+a6 S 9 − S 6 = a 7 + a 8 + a 9 S_9-S_6=a_7+a_8+a_9 S9S6=a7+a8+a9

⑩若等差数列 { a n } \{a_n\} {an}满足 a n > 0 a_n>0 an>0,则可知 d ≥ 0 d\ge 0 d0;可知 S n > 0 S_n>0 Sn>0,且数列 { S n } \{S_n\} {Sn}是单调递增数列;6

若等差数列 { a n } \{a_n\} {an}满足 S n > 0 S_n>0 Sn>0,则可知 d ≥ 0 d\ge 0 d0,也可知 a n > 0 a_n>0 an>07

判断证明

  • 等差数列的证明方法[证明方法比判断方法的逻辑严谨性要求更高]:

➊定义法: a n + 1 − a n = d ( n ∈ N ∗ ) a_{n+1}-a_n=d(n\in N^*) an+1an=d(nN) d d d为常数;或 a n − a n − 1 = d ( n ⩾ 2 且 n ∈ N ∗ ) a_{n}-a_{n-1}=d(n\geqslant 2且 n\in N^*) anan1=d(n2nN) d d d为常数;

➋等差中项法: 2 a n = a n + 1 + a n − 1 2a_{n}=a_{n+1}+a_{n-1} 2an=an+1+an1 ( n ≥ 2 , n ∈ N ∗ ) (n\ge 2,n\in N^*) (n2nN);或 2 a n + 1 = a n + a n + 2 2a_{n+1}=a_n+a_{n+2} 2an+1=an+an+2 ( n ≥ 1 , n ∈ N ∗ ) (n\ge 1,n\in N^*) (n1nN)

  • 等差数列的判断方法:除了定义法和等差中项法外,还有

➌通项公式法: a n = a 1 + ( n − 1 ) d = d n + ( a 1 − d ) = k n + b a_n=a_1+(n-1)d=dn+(a_1-d)=kn+b an=a1+(n1)d=dn+(a1d)=kn+b,( k , b k,b kb为常数),故 a n a_n an n n n的仿一次函数;

➍前 n n n项和法: S n = n a 1 + n ( n − 1 ) ⋅ d 2 = d 2 n 2 + ( a 1 − d 2 ) n = A n 2 + B n S_n=na_1+\cfrac{n(n-1)\cdot d}{2}=\cfrac{d}{2}n^2+(a_1-\cfrac{d}{2})n=An^2+Bn Sn=na1+2n(n1)d=2dn2+(a12d)n=An2+Bn,故 S n S_n Sn n n n的仿二次函数;


  1. 对公式的解读,
    a n = a 1 + ( n − 1 ) d a_n=a_1+(n-1)d an=a1+(n1)d,若定义相邻两项的差 a 2 − a 1 a_2-a_1 a2a1为间隔距离[其实就是公差],则 n − 1 n-1 n1意味着 a 1 a_1 a1 a n a_n an两项之间的间隔距离数为 n − 1 n-1 n1个,不能仅仅理解为对应的两项的下标之差;否则在处理隔项取值得到的数列的通项公式的计算时,非常容易出错,尤其要注意理解这一点。
    比如数列 { n } \{n\} {n},我们知道, a n = n a_n=n an=n,那么其所有的奇数项构成的数列的通项公式如何写呢?
    首先其下标应该体现奇数,故采用 2 n − 1 ( n ⩾ 1 ) 2n-1(n\geqslant1) 2n1(n1)[也可以取 2 n + 1 ( n ⩾ − 1 ) 2n+1(n\geqslant -1) 2n+1(n1),故一般不用这种形式],其次首项还是 1 1 1,末项为 a 2 n − 1 a_{2n-1} a2n1,此时的公差变为 2 2 2了, a 1 a_1 a1 a 2 n − 1 a_{2n-1} a2n1两项的间隔距离的个数变成了 ( 2 n − 1 ) − 1 2 = n − 1 \cfrac{(2n-1)-1}{2}=n-1 2(2n1)1=n1
    a 2 n − 1 = 1 + ( 2 n − 1 ) − 1 2 × 2 = 2 n − 1 a_{2n-1}=1+\cfrac{(2n-1)-1}{2}\times 2=2n-1 a2n1=1+2(2n1)1×2=2n1 ↩︎

  2. 以数列 { p a n + q b n } \{pa_n+qb_n\} {pan+qbn}( p , q p,q pq为常数)为例,说明如何判断其为等差数列?
    设数列 { a n } \{a_n\} {an} { b n } \{b_n\} {bn}分别是公差为 d 1 d_1 d1 d 2 d_2 d2的等差数列,
    由于 ( p a n + 1 + q b n + 1 ) − ( p a n + q b n ) = p ( a n + 1 − a n ) + q ( b n + 1 − b n ) = p ⋅ d 1 + q ⋅ d 2 (pa_{n+1}+qb_{n+1})-(pa_n+qb_n)=p(a_{n+1}-a_n)+q(b_{n+1}-b_n)=p\cdot d_1+q\cdot d_2 (pan+1+qbn+1)(pan+qbn)=p(an+1an)+q(bn+1bn)=pd1+qd2
    由于 p ⋅ d 1 + q ⋅ d 2 p\cdot d_1+q\cdot d_2 pd1+qd2为常数,故数列 { p a n + q b n } \{pa_n+qb_n\} {pan+qbn}为等差数列,公差为 p ⋅ d 1 + q ⋅ d 2 p\cdot d_1+q\cdot d_2 pd1+qd2
    其他数列的判断证明与此同理; ↩︎

  3. 由于 a m = a 1 + ( m − 1 ) d a_m=a_1+(m-1)d am=a1+(m1)d a m + k = a 1 + ( m + k − 1 ) d a_{m+k}=a_1+(m+k-1)d am+k=a1+(m+k1)d
    则新数列的公差为 a m + k − a m = k d a_{m+k}-a_m=kd am+kam=kd; ↩︎

  4. S 2 n − 1 = ( a 1 + a 2 n − 1 ) × ( 2 n − 1 ) 2 = 2 a n × ( 2 n − 1 ) 2 = ( 2 n − 1 ) ⋅ a n S_{2n-1}=\cfrac{(a_1+a_{2n-1})\times(2n-1)}{2}=\cfrac{2a_n\times(2n-1)}{2}=(2n-1)\cdot a_n S2n1=2(a1+a2n1)×(2n1)=22an×(2n1)=(2n1)an
    S 2 n = ( a 1 + a 2 n ) × 2 n 2 = n ( a 1 + a 2 n ) = ⋯ = n ( a n + a n + 1 ) S_{2n}=\cfrac{(a_1+a_{2n})\times 2n}{2}=n(a_1+a_{2n})=\cdots=n(a_n+a_{n+1}) S2n=2(a1+a2n)×2n=n(a1+a2n)==n(an+an+1)↩︎

  5. 证明如下:
    由于等差数列 { a n } \{a_n\} {an} { b n } \{b_n\} {bn}的前 n n n项和分别为 S n S_n Sn T n T_n Tn
    S 2 n − 1 = ( 2 n − 1 ) a n S_{2n-1}=(2n-1)a_n S2n1=(2n1)an T 2 n − 1 = ( 2 n − 1 ) b n T_{2n-1}=(2n-1)b_n T2n1=(2n1)bn
    S 2 n − 1 T 2 n − 1 = a n b n \cfrac{S_{2n-1}}{T_{2n-1}}=\cfrac{a_n}{b_n} T2n1S2n1=bnan↩︎

  6. 如果等差数列的公差 d < 0 d<0 d<0,则此等差数列不论首项有多大,到最后一定会出现负数项,不满足题意,故 d ⩾ 0 d\geqslant0 d0;由于 S n = n a 1 + n ( n − 1 ) 2 ⋅ d > 0 S_n=na_1+\cfrac{n(n-1)}{2}\cdot d>0 Sn=na1+2n(n1)d>0,正数之和一定为正,并且只要是正数,则正数相加的个数越多,其和越大; ↩︎

  7. 由于 S n = A n 2 + B n S_n=An^2+Bn Sn=An2+Bn,若 A = 0 A=0 A=0,则 d = 0 d=0 d=0,则满足 d ≥ 0 d\ge 0 d0,也可知 a n > 0 a_n>0 an>0
    A ≠ 0 A\neq0 A=0,则必有 A > 0 A>0 A>0,即 d > 0 d>0 d>0,否则二次函数开口向下,必然不满足 S n > 0 S_n>0 Sn>0
    又由于 S 1 = a 1 > 0 S_1=a_1>0 S1=a1>0,故 a n = a 1 + ( n − 1 ) d > 0 a_n=a_1+(n-1)d>0 an=a1+(n1)d>0↩︎

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值