相关概念
- 刻画等差数列的几种语言
[自然语言]:从第二项起,每一项与它的前一项的差等于同一个常数的数列称为等差数列,这个常数称为公差,常用 d d d来表示。
[符号语言]:
a n − a n − 1 = d ( n ⩾ 2 , n ∈ N ∗ , d 为常数 ) a_n-a_{n-1}=d(n\geqslant 2,n\in N^*,d为常数) an−an−1=d(n⩾2,n∈N∗,d为常数)
或者表示为
a n + 1 − a n = d ( n ⩾ 1 , n ∈ N ∗ , d 为常数 ) a_{n+1}-a_n=d(n\geqslant 1,n\in N^*,d为常数) an+1−an=d(n⩾1,n∈N∗,d为常数)
[图形语言]:以 a n = 2 n + 1 a_n=2n+1 an=2n+1为例,
-
等差中项:若 a , A , b a,A,b a,A,b成等差数列,则 A A A称为 a a a与 b b b的等差中项,即 A = a + b 2 A=\cfrac{a+b}{2} A=2a+b,任意两个实数必有等差中项,但任意两个实数不一定有等比中项。
-
通项公式 a n a_n an: a n = a 1 + ( n − 1 ) d a_n=a_1+(n-1)d an=a1+(n−1)d,其推广式: a n = a m + ( n − m ) d a_n=a_m+(n-m)d an=am+(n−m)d,1
-
前 n n n项和公式 S n S_n Sn: S n = n ( a 1 + a n ) 2 = n a 1 + n ( n − 1 ) ⋅ d 2 S_n=\cfrac{n(a_1+a_n)}{2}=na_1+\cfrac{n(n-1)\cdot d}{2} Sn=2n(a1+an)=na1+2n(n−1)⋅d,注意这两个公式是等价的。
相关性质
①等差数列中,若 m + n = p + q = 2 k ( m , n , p , q , k ∈ N ∗ ) m+n=p+q=2k(m,n,p,q,k\in N^*) m+n=p+q=2k(m,n,p,q,k∈N∗),则 a m + a n = a p + a q = 2 a k a_m+a_n=a_p+ a_q=2a_k am+an=ap+aq=2ak。
②若数列 { a n } \{a_n\} { an}, { b n } \{b_n\} { bn}[前提是项数相同]是等差数列,则 { λ a n } \{\lambda a_n\} { λan}, { a n + b n } \{a_n+b_n\} { an+bn}, { a n − b n } \{a_n-b_n\} { an−bn}, { p a n + q b n } \{pa_n+qb_n\} { pan+qbn}( p , q p,q p,q为常数)仍然是等差数列;2解释
③在等差数列 { a n } \{a_n\} { an}中,等距离取出若干项也构成一个等差数列,即 a m , a m + k , a m + 2 k , a m + 3 k , ⋯ a_m,a_{m+k},a_{m+2k},a_{m+3k},\cdots am,am+k,am+2k,am+3k,⋯为等差数列,公差为 k d kd kd;3
④等差数列 { a n } \{a_n\} { an}的前 n n n项和为 S n S_n Sn,则 S n , S 2 n − S n , S 3 n − S 2 n , ⋯ , S_n,S_{2n}-S_n,S_{3n}-S_{2n},\cdots , Sn,S2n−Sn,S3n−S2n,⋯,仍成等差数列,但是同样的刻画形式,到了等比数列中,就有了一定的限制。
⑤等差数列的求和公式的应用:
S 2 n − 1 = ( 2 n − 1 ) ⋅ a n S_{2n-1}=(2n-1)\cdot a_n S2n−1=(2n−1)⋅an, S 2 n = n ( a 1 + a 2 n ) = ⋯ = n ( a n + a n + 1 ) S_{2n}=n(a_1+a_{2n})=\cdots=n(a_n+a_{n+1}) S2n=n(a1+a2n)=⋯=n(an+an+1);4
若 n n n为偶数,则 S 偶 − S 奇 = n d 2 S_{偶}-S_{奇}=\cfrac{nd}{2} S偶−S奇=2nd;
若 n n n为奇数,则 S 奇 − S 偶 = a 中 S_{奇}-S_{偶}=a_{中} S奇−S偶=a中(中间项);
⑥等差数列的单调性,从函数的角度理解和认知很容易。
a n = a 1 + ( n − 1 ) d = d ⋅ n + ( a 1 − d ) a_n=a_1+(n-1)d=d\cdot n+(a_1-d) an=a1+(n−1)d=d⋅n+(a1−d)
故 a n = f ( n ) a_n=f(n) an=f(n)是 n n n的仿一次函数,其单调性完全取决于公差 d d d,
当 d > 0 d>0 d>0, a n a_n an单调递增;
当 d < 0 d<0 d<0, a n a_n an单调递减;
当 d = 0 d=0 d=0, a n a_n an为常数列,无单调性;
⑦若数列 { a n } \{a_n\} { an}为等差数列,则数列 { S n n } \{\cfrac{S_n}{n}\} { nSn}也为等差数列;
分析:由于等差数列的 S n = n a 1 + n ( n − 1 ) ⋅ d 2 = d 2 n 2 + ( a 1 − d 2 ) n S_n=na_1+\cfrac{n(n-1)\cdot d}{2}=\cfrac{d}{2}n^2+(a_1-\cfrac{d}{2})n Sn=na1+2n(n−1)⋅d=2dn2+(a1−2d)n,
令 d 2 = A \cfrac{d}{2}=A 2