note_Communication-Efficient Federated Learning for Heterogeneous Edge Devices Based on Adaptive Gra

Communication-Efficient Federated Learning for Heterogeneous Edge Devices Based on Adaptive
Gradient Quantization
Heting Liu, Fang He and Guohong Cao
arXiv
2022

一、动机和贡献

动机:解决FL通信问题的一种重要的方法是 “梯度量化”,但是现在的量化存在以下问题:1)“低精度”量化可以减少数据传输,却引入大的量化误差导致需要更多轮数去训练模型;“高精度”量化量化误差小,却需要传输较多的数据;2)现存量化方式大多基于固定且预设的量化精度,但是一方面由于最优量化精度随时间的推移而不同,另一方面不同client有着不同的通信资源,因此这种静态决定量化精度是不合理的。

贡献:本文通过动态对不同client分配不同的量化精度,旨在尽量减少FL训练过程中的 wall-clock training time,主要包括如下两方面的设计:

  • 不同训练轮数有着不同的量化精度:根据量化过程中 “梯度范数gradient norm” 的不同,在训练刚开始时使用大精度量化,在训练后期使用小精度量化 ;
  • 不同通信能力client有着不同量化精度:根据client的通信能力,快client赋予大精度量化,慢client赋予小精度量化。

二、算法

2.1 随机均匀量化(QSGD)

假设 s ∈ N s\in\mathbb{N} sN表示量化精度, v = [ v 1 , ⋯   , v d ] ∈ R d , v ≠ 0 \mathbf{v}=[v_1,\cdots,v_d]\in\mathbb{R}^d,\mathbf{v}\ne\mathbf{0} v=[v1,,vd]Rd,v=0表示 d d d维梯度向量,那么 v j v_j vj 可以由量化函数 Q s ( ⋅ ) Q_s(\cdot) Qs() 定义为:
Q s ( v j ) = ∣ ∣ v ∣ ∣ 2 ⋅ s i g n ( v j ) ⋅ ζ j ( v , s ) , Q_{s}(v_{j})=||\mathbf{v}||_{2}\cdot sign(v_{j})\cdot\zeta_{j}(\mathbf{v},s), Qs(vj)=∣∣v2sign(vj)ζj(v,s),其中 ζ j ( v , s ) \zeta_{j}(\mathbf{v},s) ζj(v,s) 表示随机变量,定义为:
ζ j ( v , s ) = { l / s , w i t h   p r o b a b i l i t y   ( 1 − ∣ v j ∣ ∣ ∣ v ∣ ∣ 2 s + l ) ( l + 1 ) / s , o t h e r w i s e . \zeta_j(\mathbf{v},s)=\left\{\begin{array}{cc}l/s,&with~probability~(1-\frac{|v_j|}{||\mathbf{v}||_2}s+l)\\(l+1)/s,&otherwise.\end{array}\right. ζj(v,s)={l/s,(l+1)/s,with probability (1∣∣v2vjs+l)otherwise.其中, 0 ≤ l < s 0\leq l<s 0l<s 是一个整数,使得 ∣ v j ∣ ∣ ∣ v ∣ ∣ 2 ∈ [ l / s , ( l + 1 ) / s ] \frac{|v_{j}|}{||\mathbf{v}||_{2}}\in[l/s,(l+1)/s] ∣∣v2vj[l/s,(l+1)/s]。特别的,当 v = 0 \mathbf{v}=\mathbf{0} v=0,可以有 Q s ( v ) = 0 Q_s(\mathbf{v})=\mathbf{0} Qs(v)=0

QSGD可以解释为:将 [ 0 , ∥ v ∥ 2 ] [0,\|\mathbf{v}\|_2] [0,v2] 之间 “均匀” 划分为 s − 1 s-1 s1(包括一个符号位) 个桶,因此桶的端点可以表示为 0 = τ 1 < τ 2 < ⋯ < τ s = ∣ ∣ v ∣ ∣ 2 0=\tau_{1}<\tau_{2}<\cdots<\tau_{s}=||\mathbf{v}||_{2} 0=τ1<τ2<<τs=∣∣v2。因为 ∣ v j ∣ ∈ [ 0 , ∣ ∣ v ∣ ∣ 2 ] |v_{j}|\in[0,||\mathbf{v}||_{2}] vj[0,∣∣v2],因此每个 ∣ v j ∣ |v_j| vj 必定属于某个桶 [ τ i , τ i + 1 ) [\tau_i,\tau_{i+1}) [τi,τi+1)。最后,根据概率( ζ j ( v , s ) \zeta_j(\mathbf{v},s) ζj(v,s))决定 Q s ( v j ) Q_s(v_j) Qs(vj) 取左边界 τ i \tau_i τi 还是有边界 τ i + 1 \tau_{i+1} τi+1

注:这里 s s s 有两层含义,表达量化后梯度所需要的比特数或者真值,需要注意区分。

2.2 Overview of AdaGQ

AdaGQ
上图展示了 AdaGQ 的基本流程,其中黑色加粗字体表示的是这篇文章的创新之处,具体表现为如下两方面:

  1. adaptive:根据 loss decrease rategradient norm 在不同训练轮数给出不同的量化精度;
  2. heterogeneous:根据 通信时间 的差异,给不同client不同量化精度以对齐通信时间。

注:与之前QSGD中 s s s 的两层含义不同,在后续写作中, s s s 表示不带符号位的量化后梯度的真值, b = ⌊ log ⁡ 2 ( s ) + 1 ⌋ b=\lfloor\log_{2}(s)+1\rfloor b=log2(s)+1 表示相应的比特数。

2.3 Adaptive Quantization

定义 loss decrease rate R k R_k Rk 为:
R k = ( L k − 1 − L k ) / T k − 1 , k , R_k=(L_{k-1}-L_k)/T_{k-1,k}, Rk=(Lk1Lk)/Tk1,k,其中, L k L_k Lk 表示 k k k 轮时所有客户端的平均损失; T k − 1 , k T_{k-1,k} Tk1,k 表示 k − 1 k-1 k1 轮结束到 k k k 轮结束所需的时间(这里应该也是平均时间,因为所有client的执行时间都将被对齐)。

假设 R k ∗ R_k^* Rk 表示 k k k 轮时由最佳量化精度 s k ∗ s_k^* sk 得到的最佳 loss decrease rate,那么定义函数:( L L L T T T 都是关于 s s s 的函数,因此 R R R 也是关于 s s s 的函数)
f ( s k ) = R k ∗ − R k . f(s_k)=R_k^*-R_k. f(sk)=RkRk.因此,量化精度 s s s 可以以如下方式更新:
s k + 1 = s k − λ ∇ f ( s k ) , s_{k+1}=s_k-\lambda\nabla f(s_k), sk+1=skλf(sk),其中, λ \lambda λ 表示步长。但是遗憾的是,由于函数 f ( s k ) f(s_k) f(sk) 关于自变量 s k s_k sk 的具体表达形式不清楚,所以直接求导数 ∇ f ( s k ) \nabla f(s_k) f(sk) 是不可行的。因此这篇文章利用和 “导数定义” 相似的思想解决,即:选取一个靠近 s k s_k sk 的量化精度 s k ′ s_k^\prime sk,并得到相应的 R k ′ R_k^\prime Rk,这样就可以得到导数 ∇ f ( s k ) \nabla f(s_k) f(sk) 的符号为:
s i g n ( ∇ f ( s k ) ) = s i g n ( R k ′ − R k s k − s k ′ ) sign(\nabla f(s_k))=sign(\frac{R_k^{\prime}-R_k}{s_k-s_k^{\prime}}) sign(f(sk))=sign(skskRkRk) 这里如何得到 R k ′ R_k^\prime Rk 将在 “Implementation of AdaGQ“ 小节中给出。因此,更新规则变为:
{ s ^ k + 1 = s k − λ 1 , i f s i g n ( ∇ f ( s k ) ) = 1 s ^ k + 1 = s k + λ 2 , i f s i g n ( ∇ f ( s k ) ) = − 1. \left\{\begin{matrix}&\hat{s}_{k+1}=s_k-\lambda_1,&if&sign(\nabla f(s_k))=1\\&\hat{s}_{k+1}=s_k+\lambda_2,&if&sign(\nabla f(s_k))=-1.\end{matrix}\right. {s^k+1=skλ1,s^k+1=sk+λ2,ififsign(f(sk))=1sign(f(sk))=1.其中, λ 1 = s k 2 , λ 2 = 2 × s k \lambda_1=\frac{s_k}{2},\lambda_2=2\times s_k λ1=2sk,λ2=2×sk
注:梯度其实最重要的就是表示更新的方向(即它的符号),至于其绝对值大小可以由”步长“决定,因此这里只考虑梯度的符号是合理的。

最后,根据 ”梯度范数“ 对 s ^ k + 1 \hat{s}_{k+1} s^k+1 进行校准:
s k + 1 = s ^ k + 1 + λ g ( log ⁡ 2 ∣ ∣ g k ∣ ∣ − log ⁡ 2 ∣ ∣ g k − 1 ∣ ∣ ) s_{k+1}=\hat{s}_{k+1}+\lambda_{\mathbf{g}}(\log_{2}||\mathbf{g}_{k}||-\log_{2}||\mathbf{g}_{k-1}||) sk+1=s^k+1+λg(log2∣∣gk∣∣log2∣∣gk1∣∣)其中, λ g \lambda_{\mathbf{g}} λg 表示相应的系数。

2.4 Heterogeneous Quantization

根据client ”历史运行时间“ 确定相应的量化精度,定义为:
E ( t i , k + 1 r ) = E ( t i , k + 1 c p ) + E ( t i , k + 1 c m ) ≈ E ( t i , k + 1 c p ) + b i , k + 1 × E ( P r i . k + 1 t r a n s ) , \mathbb{E}(t_{i,k+1}^r)=\mathbb{E}(t_{i,k+1}^{cp})+\mathbb{E}(t_{i,k+1}^{cm})\approx\mathbb{E}(t_{i,k+1}^{cp})+b_{i,k+1}\times\mathbb{E}(\frac{P}{r_{i.k+1}^{trans}}), E(ti,k+1r)=E(ti,k+1cp)+E(ti,k+1cm)E(ti,k+1cp)+bi,k+1×E(ri.k+1transP),其中, t i , k + 1 c p t_{i,k+1}^{cp} ti,k+1cp 表示client执行 SGD和量化梯度的时间; t i , k + 1 c m t_{i,k+1}^{cm} ti,k+1cm 表示上传量化后梯度到sever的时间; P P P 是一个常数表示梯度总数; r i . k + 1 t r a n s r_{i.k+1}^{trans} ri.k+1trans 表示client i i i k + 1 k+1 k+1 轮时的数据传输率。

因此,对齐通信时间可以描述为 E ( t 1 , k + 1 r ) = E ( t 2 , k + 1 r ) = ⋯ = E ( t n , k + 1 r ) \mathbb{E}(t_{1,k+1}^{r})=\mathbb{E}(t_{2,k+1}^{r})=\cdots=\mathbb{E}(t_{n,k+1}^{r}) E(t1,k+1r)=E(t2,k+1r)==E(tn,k+1r)。那么对于client i i i j j j,其量化精度的关系可以表示为:
b j , k + 1 = 1 E ( P r j , k + 1 t r a n s ) ( E ( t i , k + 1 c p ) − E ( t j , k + 1 c p ) + b i , k + 1 × E ( P r i , k + 1 t r a n s ) ) b_{j,k+1}=\frac{1}{\mathbb{E}(\frac{P}{r_{j,k+1}^{trans}})}(\mathbb{E}(t_{i,k+1}^{cp})-\mathbb{E}(t_{j,k+1}^{cp})+b_{i,k+1}\times\mathbb{E}(\frac{P}{r_{i,k+1}^{trans}})) bj,k+1=E(rj,k+1transP)1(E(ti,k+1cp)E(tj,k+1cp)+bi,k+1×E(ri,k+1transP))这里需要定义两个变量:

  • E ( t i , k + 1 c p ) = 1 k ∑ k ′ = 1 k t i , k ′ c p \begin{aligned}\mathbb{E}(t_{i,k+1}^{cp})=\frac{1}{k}\sum_{k'=1}^{k}t_{i,k'}^{cp}\end{aligned} E(ti,k+1cp)=k1k=1kti,kcp,根据历史时间的平均得到;
  • E ( P r i , k + 1 t r a n s ) ≈ P r i , k t r a n s = t i , k c m / b i , k \mathbb{E}(\frac{P}{r_{i,k+1}^{t\boldsymbol{r}a\boldsymbol{n}s}})\approx\frac{P}{r_{i,k}^{t\boldsymbol{r}a\boldsymbol{n}s}}=t_{i,k}^{c\boldsymbol{m}}/b_{i,k} E(ri,k+1transP)ri,ktransP=ti,kcm/bi,k,认为传出率在小时间范围内的变化是不明显的。

因此,如果给定 client i i i 的量化精度,client j j j 的量化精度可以表示为:
b j , k + 1 = b j , k t j , k c m ( 1 k ∑ k ′ = 1 k t i , k ′ c p − 1 k ∑ k ′ = 1 k − 1 t j , k ′ c p + b i , k + 1 × t i , k c m b i , k ) , ∀ j ∈ { 1 , ⋯   , n } , j ≠ i . \begin{aligned}b_{j,k+1}=\frac{b_{j,k}}{t_{j,k}^{cm}}(\frac1k\sum_{k^{\prime}=1}^{k}t_{i,k^{\prime}}^{cp}-\frac1k\sum_{k^{\prime}=1}^{k-1}t_{j,k^{\prime}}^{cp}+b_{i,k+1}\times\frac{t_{i,k}^{cm}}{b_{i,k}}),\forall j\in\{1,\cdots,n\},j\neq i.\end{aligned} bj,k+1=tj,kcmbj,k(k1k=1kti,kcpk1k=1k1tj,kcp+bi,k+1×bi,kti,kcm),j{1,,n},j=i.

2.5 Implementation of AdaGQ

implementation
上图表示 AdaGQ 在 k + 1 k+1 k+1 轮时的时间线图。其中, t k + 1 d o w n t_{k+1}^{down} tk+1down 表示sever发送同时client接收模型所需要的时间; t k + 1 s e v e r t_{k+1}^{sever} tk+1sever sever执行模型聚合的时间。

关于如何得到 R k ′ R_k^{\prime} Rk,分为如下两个步骤:

  1. 这篇文章定义 s k = 1 n ∑ i = 1 n s i , k s_{k}=\frac{1}{n}\sum_{i=1}^{n}s_{i,k} sk=n1i=1nsi,k,且 s k ′ = ⌊ s k / 2 ⌋ s_{k}^{\prime}=\lfloor s_{k}/2\rfloor sk=sk/2(即比特数 b k ′ = b k − 1 b_k^{\prime}=b_k-1 bk=bk1)。
  2. 同时sever端定义 k − 1 k-1 k1 k k k 轮之间的执行时间 T k − 1 , k = m a x { t i , k c p + t i , k c m + t i , k d o w n } + t k s e r v e r . T_{k-1,k}=max\{t_{i,k}^{cp}+t_{i,k}^{cm}+t_{i,k}^{down}\}+t_{k}^{server}. Tk1,k=max{ti,kcp+ti,kcm+ti,kdown}+tkserver.可以容易知道, T k − 1 , k ′ T_{k-1,k}^{\prime} Tk1,k T k − 1 , k T_{k-1,k} Tk1,k 的主要差异是关于 传输时间 t i , k ′ c m t_{i,k}^{\prime cm} ti,kcm t i , k ′ c m t_{i,k}^{\prime cm} ti,kcm,而传输时间的差异和相应的比特数成比例关系的(即 b i , k ′ b_{i,k}^\prime bi,k b i , k b_{i,k} bi,k),因此可以得到 T k − 1 , k ′ = m a x { t i , k c p + ⌊ log ⁡ 2 ( s i , k ′ ) ⌋ + 1 ⌊ log ⁡ 2 ( s i , k ) ⌋ + 1 t i , k c m + t i , k d o w n } + t k s e r v e r . T_{k-1,k}^{\prime}=max\{t_{i,k}^{cp}+\frac{\lfloor\log_{2}(s_{i,k}^{\prime})\rfloor+1}{\lfloor\log_{2}(s_{i,k})\rfloor+1}t_{i,k}^{cm}+t_{i,k}^{down}\}+t_{k}^{server}. Tk1,k=max{ti,kcp+log2(si,k)⌋+1log2(si,k)⌋+1ti,kcm+ti,kdown}+tkserver.
    这样就可以得到相应的 R k ′ R_k^{\prime} Rk

关于如何根据client通信异质得到相应的量化精度。这篇文章中只是说明了:如果得到 client i i i 的量化精度就可以得出 client j j j 的量化精度。那么第一个client 的量化精度如何得出呢?原文中没有说明,我的理解是 ”可以给速度中等的client赋予平均精度,然后依次计算其他client的量化精度“。

AdaGQ 伪代码如下:
pseudo-code

三、讨论

本文主要关注的是FL中,尽量减少总训练时间的问题(包括减少每轮执行时间 和 总执行轮数)。同时为了兼顾 模型准确性,根据量化过程中使用范数的特点,在训练开始时尽量使用大精度,在训练后期使用小精度。

主要特点是:

  • 提出对不同训练时期使用不同的量化精度
  • 量化了各个client通信能力,即使用时间来衡量

不足之处:

  • 没有考虑对不同量化精度的模型进行个性化聚合,只是直接使用了FedAvg中根据数据量的大小聚合
  • 只考虑 client 之间通信能力的差异,对于 ”算力、存储等“差异没有考虑
  • 本文出现的时间线图感觉并行能力不强,是否具有改善的可能
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值