EM算法小结

EM算法主要包含两个变量:隐变量 Z 和模型参数θ,分别在E步和M步中进行迭代优化。隐变量 Z 可以是数据缺失的特征或者是主题变量等。

公式推导:

定义:X–观察数据; Z –隐变量;θ–模型参数。

最大化目标函数来优化 Z θ

lnp(X|θ)

需要用到公式:
p(X,Z|θ)=p(Z|X,θ)p(X|θ)

推导:

lnp(X|θ)=Zq(Z)lnp(X|θ)=Zq(Z)lnp(X,Z|θ)p(Z|X,θ)=Zq(Z)lnp(X,Z|θ)p(Z|X,θ)q(Z)q(Z)=Zq(Z)lnp(X,Z|θ)q(Z)Zq(Z)lnp(Z|X,θ)q(Z)

定义:
L(q,θ)=Zq(Z)lnp(X,Z|θ)q(Z)KL(qp)=Zq(Z)lnp(Z|X,θ)q(Z)0

分析:

为了最大化 lnp(X|θ) ,迭代优化 q(Z) θ θ 固定时, lnp(X|θ) 也就确定了,与 q(Z) 的具体取值无关。

E步:固定 θ ,调整 q(Z) 来最大化 lnp(X|θ) 的下界 L(q,θ) ,即最小化KL距离。使 q(Z) 尽量接近于后验概率 p(Z|X,θ)

M步:固定 q(Z) ,调整 θ 来最大化下界 L(q,θ) θ 改变之后 KL(qp) 也会增大,从而整个目标函数 lnp(X|θ) 变大。

labuladong的算法小抄是一本关于算法的笔记,主要用于准备算法面试。作者在准备面试时,参考了许多算法书籍和在线资源,如《数据结构与算法分析》、《剑指offer》、《啊哈算法》、《图解算法》等,以及浙大的数据结构课程视频。然而,由于时间有限,作者认为labuladong的书最适合他。这本书对算法的讲解简洁明了,有很多实用的套路和技巧。作者通过学习这本书,掌握了一些常见算法题的解题方法,对算法也有了更好的理解。labuladong的书使用多种编程语言,如cpp、Python、JAVA,但转为JAVA比较容易,这对作者来说更友好。总的来说,labuladong的算法小抄让作者对算法有了更大的信心,甚至开始享受算法的学习过程。 labuladong的算法小抄主要介绍了两种最小生成树算法,即Prim算法和Kruskal算法。这两种算法都是基于贪心思想,但实现上有一些差异。Prim算法以顶点为单位,与图中的边数无关,适用于稠密图;而Kruskal算法以边为单位,时间复杂度主要取决于边的数量,适用于稀疏图。最小生成树是用来解决无向图连接成本最小的问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [labuladong算法小抄中图算法的学习笔记(c++版)](https://blog.csdn.net/m0_57298796/article/details/125646402)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [labuladong算法小结](https://blog.csdn.net/u013598405/article/details/118370761)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值