自然语言处理——知识图谱——Text-To-Entity Mapping

一、任务定义

Text-to-entity mapping是将文本和知识图谱中实体概念关联起来的任务。
在这里插入图片描述

二、数据集

笔者只是抱着了解该任务的目的,只是对数据集的最初步理解。这里给出[2]使用的WordNet数据集,以及数据格式。[2]使用的数据核心是该文件

其数据格式如下, 括号中为笔者的补充解释:

authority.n.07【实体】 authority【指代实体的词】 authoritative written work【对实体的Text定义】 <SOS> v3 v2 v36 v7 v7 v10 v11 v12 v8 <EOS>【知识图谱中到实体“authority.n.07”的路径,其中vi是简化的实体节点表示】

三、评测指标

该任务采用简单的F1值作为评价指标,计算公式如下
在这里插入图片描述

四、相关工作

序号会议作者论文阅读笔记源码复现创新点
[1]EMNLP 2018Dimitri KartsaklisMapping Text to Knowledge Graph Entities using Multi-Sense LSTMs暂无
[2]ACL 2019Victor ProkhorovGenerating Knowledge Graph Paths from Textual Definitions using Sequence-to-Sequence Models戳这里提出Text->Path的Mapping观点
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值