一、任务定义
Text-to-entity mapping是将文本和知识图谱中实体概念关联起来的任务。
二、数据集
笔者只是抱着了解该任务的目的,只是对数据集的最初步理解。这里给出[2]使用的WordNet
数据集,以及数据格式。[2]使用的数据核心是该文件
其数据格式如下, 括号中为笔者的补充解释:
authority.n.07【实体】 authority【指代实体的词】 authoritative written work【对实体的Text定义】 <SOS> v3 v2 v36 v7 v7 v10 v11 v12 v8 <EOS>【知识图谱中到实体“authority.n.07”的路径,其中vi是简化的实体节点表示】
三、评测指标
该任务采用简单的F1
值作为评价指标,计算公式如下
四、相关工作
序号 | 会议 | 作者 | 论文 | 阅读笔记 | 源码复现 | 创新点 |
---|---|---|---|---|---|---|
[1] | EMNLP 2018 | Dimitri Kartsaklis | Mapping Text to Knowledge Graph Entities using Multi-Sense LSTMs | 暂无 | 无 | |
[2] | ACL 2019 | Victor Prokhorov | Generating Knowledge Graph Paths from Textual Definitions using Sequence-to-Sequence Models | 戳这里 | 无 | 提出Text->Path 的Mapping观点 |