概率论知识回顾(八):二维离散随机变量

概率论知识回顾(八)

重点:二维离散随机变量

知识回顾用于巩固知识和查漏补缺。知识回顾步骤:

  1. 查看知识回顾中的问题,尝试自己解答
  2. 自己解答不出来的可以查看下面的知识解答巩固知识。
  3. 对知识解答有疑问的,说明有关这一点的知识或者公式没有理解透彻或者没有记住,要重新翻看书籍。

知识回顾

  1. 什么是n维随机变量?二维离散随机变量又是什么?
  2. 二维离散随机变量的联合分布律是什么?有什么性质?
  3. 什么是边缘分布律?怎么进行表示?
  4. 二维离散随机变量的边缘分布律相同,是否意味着它们的联合分布律也相同?
  5. 什么是二维离散随机变量的条件分布律?怎么用公式进行表示?
  6. 条件分布律的两个基本性质是什么?
  7. 二维随机变量中的X和Y相互独立怎么进行表示?
  8. n维随机变量的相互独立怎么表示?

知识解答

  1. 什么是n维随机变量?二维离散随机变量又是什么?

    • X 1 , X 2 , ⋯   , X n X_1, X_2, \cdots ,X_n X1,X2,,Xn 分别是同一样本空间 Ω \Omega Ω 上的随机变量,那么由这些个随机变量组合而成的随机向量 ( X 1 , X 2 , … , X n ) (X_1, X_2, \dots, X_n) (X1,X2,,Xn) 即为n维随机变量或n维随机向量。
    • 由两个随机变量 X,Y 组合而成的随机变量 (X, Y) 即为二维随机变量,如果 只能取有限对或可列无穷个对值 ( x i , y j ) ( i , j = 1 , 2 , ⋯   ) (x_i,y_j)(i,j=1,2,\cdots) (xi,yj)(i,j=1,2,) ,则称为二维离散随机变量。
  2. 二维离散随机变量的联合分布律是什么?有什么性质?

    • 对于二维离散随机变量 p i j = P { X = x i , Y = y j } p_{ij} = P\begin{Bmatrix} X = x_i, Y=y_j \end{Bmatrix} pij=P{X=xi,Y=yj} 称为二维离散随机变量的联合分布律。
    • 二维离散随机变量的离散分布有两个性质:
      • p i j ≥ 0 p_{ij} \ge 0 pij0
      • ∑ i = 1 ∑ j = 1 p i j = 1 \sum_{i=1}\sum_{j=1}p_{ij} = 1 i=1j=1pij=1
  3. 什么是边缘分布律?怎么进行表示?

    • 由于二维离散随机变量由两个随机变量X,Y组成,因此两个随机变量各自的分布律被称为边缘分布律
    • 例如:X 的自身分布律被称为 二维离散随机变量 (X,Y) 的 关于X的边缘分布律
    • 表示: P { X = x i } = P { X = x i , ⋃ j ( Y = y j ) } = ∑ j P { X = x i , Y = y j } = ∑ j p i j = p i ⋅ ,   i = 1 , 2 , ⋯ P\begin{Bmatrix} X = x_i \end{Bmatrix} = P\begin{Bmatrix} X=x_i , \bigcup_j (Y=y_j) \end{Bmatrix} = \sum_jP\begin{Bmatrix} X = x_i, Y = y_j \end{Bmatrix} = \sum_jp_{ij} = p_{i·}, \space i = 1, 2, \cdots P{X=xi}=P{X=xi,j(Y=yj)}=jP{X=xi,Y=yj}=jpij=pi, i=1,2,
    • 同理: P { Y = y j } = p ⋅ j ,   j = 1 , 2 , ⋯ P\begin{Bmatrix} Y = y_j \end{Bmatrix} = p_{·j}, \space j = 1, 2, \cdots P{Y=yj}=pj, j=1,2,
  4. 二维离散随机变量的边缘分布律相同,是否意味着它们的联合分布律也相同?

    • 不意味着。尽管边缘分布律相同,他们的联合分布律也不一定相同,还需要考虑它们各自的特性以及它们之间的关系。
  5. 什么是二维离散随机变量的条件分布律?怎么用公式进行表示?

    • 二维离散随机变量的条件分布即一个随机变量在另一个随机变量发生的情况下的分布律。也就是说条件分布律表示了两个随机变量之间的依赖性。
    • 它们的公式表示如下:
      • P { X = x i ∣ Y = y j } = P { X = x i , Y = y j } P { Y = y j } = p i j p ⋅ j = p i ∣ j P\begin{Bmatrix} X = x_i | Y = y_j \end{Bmatrix} = \frac{P\begin{Bmatrix} X = x_i , Y = y_j \end{Bmatrix}}{P\begin{Bmatrix} Y = y_j \end{Bmatrix}} = \frac{p_{ij}}{p_{·j}} = p_{i|j} P{X=xiY=yj}=P{Y=yj}P{X=xi,Y=yj}=pjpij=pij
      • 同理 : P { Y = y j ∣ X = x i } = P { X = x i , Y = y j } P { X = x i } = p i j p i ⋅ = p j ∣ i P\begin{Bmatrix} Y = y_j | X = x_i \end{Bmatrix} = \frac{P\begin{Bmatrix} X = x_i , Y = y_j \end{Bmatrix}}{P\begin{Bmatrix} X = x_i \end{Bmatrix}} = \frac{p_{ij}}{p_{i·}} = p_{j|i} P{Y=yjX=xi}=P{X=xi}P{X=xi,Y=yj}=pipij=pji
  6. 条件分布律的两个基本性质是什么?

    • p i ∣ j ≥ 0 , p j ∣ i ≥ 0 p_{i|j} \ge 0, p_{j|i} \ge 0 pij0,pji0
    • ∑ i p i ∣ j = 1 , ∑ j p j ∣ i = 1 \sum_i p_{i|j}= 1, \sum_jp_{j|i} = 1 ipij=1,jpji=1
  7. 二维随机变量中的X和Y相互独立怎么进行表示?

    • X 和 Y 相互独立也即它们之间没有依赖关系。也就是说无论 Y 取什么值都不会影响 X 的概率特性。同理 X 的取值也不会影响 Y 的概率特性。
    • 也就是说 P { X = x i ∣ Y = y j } = P { X = x i } P\begin{Bmatrix} X = x_i | Y = y_j \end{Bmatrix} = P\begin{Bmatrix} X = x_i \end{Bmatrix} P{X=xiY=yj}=P{X=xi} 根据上面提到的条件分布律的公式即可得到 P { X = x i , Y = y j } = P { X = x i } P { Y = y j } P\begin{Bmatrix} X = x_i , Y = y_j \end{Bmatrix} = P\begin{Bmatrix} X = x_i \end{Bmatrix}P\begin{Bmatrix} Y = y_j \end{Bmatrix} P{X=xi,Y=yj}=P{X=xi}P{Y=yj}
    • p i j = p i ⋅ ⋅ p ⋅ j p_{ij} = p_{i·}·p_{·j} pij=pipj
  8. n维随机变量的相互独立怎么表示?

    • 假设 x i 1 ( 1 ) , x i 2 ( 2 ) , ⋯   , x i n ( n ) x_{i_1}^{(1)},x_{i_2}^{(2)},\cdots, x_{i_n}^{(n)} xi1(1),xi2(2),,xin(n) 分别是 随机变量 X 1 , X 2 , ⋯   , X n X_1, X_2,\cdots, X_n X1,X2,,Xn 的某一取值。如果它们满足下面的公式则说明它们相互独立。

      P { X 1 = x i 1 ( 1 ) , X 2 = x i 2 ( 2 ) , ⋯   , X n = x i n ( n ) } = P { X 1 = x i 1 ( 1 ) } P { X 2 = x i 2 ( 2 ) } ⋯ P { X n = x i n ( n ) } P\begin{Bmatrix}X_1 = x_{i_1}^{(1)},X_2 = x_{i_2}^{(2)},\cdots,X_n = x_{i_n}^{(n)} \end{Bmatrix} = P\begin{Bmatrix} X_1 = x_{i_1}^{(1)} \end{Bmatrix}P\begin{Bmatrix} X_2 = x_{i_2}^{(2)} \end{Bmatrix}\cdots P\begin{Bmatrix} X_n = x_{i_n}^{(n)} \end{Bmatrix} P{X1=xi1(1),X2=xi2(2),,Xn=xin(n)}=P{X1=xi1(1)}P{X2=xi2(2)}P{Xn=xin(n)}

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值