很佩服的一个Google大佬,离职了。。

知名人工智能专家GeoffreyHinton从谷歌离职,引发科技界热议。作为神经网络和深度学习的先驱,Hinton表达了对AI风险的关注,并表示离职能更自由地讨论这些问题。他曾因在神经网络领域的贡献获得图灵奖,并培养出多位行业领军人物。
摘要由CSDN通过智能技术生成

这两天,科技圈又有一个突发的爆款新闻相信不少同学都已经看到了。

那就是75岁的计算机科学家Geoffrey Hinton从谷歌离职了,从而引起了科技界的广泛关注和讨论。

而Hinton自己也证实了这一消息。


提到Geoffrey Hinton这个名字,对于一些了解过AI人工智能和机器学习等领域的同学来说,应该挺熟悉的。

Hinton是一位享誉全球的人工智能专家,被誉为“神经网络之父”、“深度学习的鼻祖”、“人工智能教父”等等,在这个领域一直以来都是最受尊崇的泰斗之一。

作为人工智能领域的先驱,他的工作和成就也对该领域的后续发展产生了深远的影响。


其实算一下时间,距离Hinton 2013年加入谷歌,已经也有十个年头了。

据报道,Hinton在4月份其实就提出了离职,并于后来直接与谷歌CEO劈柴哥(Sundar Pichai)进行了交谈。

Hinton在接受媒体访谈时表示,他非常关注人工智能的风险,并表示对自己多年的工作和研究存在遗憾。

正当大家都在好奇Hinton离职原因的时候,Hinton自己却表示,这样一来可以更加自由地讨论人工智能的风险。


1947年,Geoffrey Hinton出生于英国温布尔登的一个知识分子家庭。

他的父亲Howard Everest Hinton是一个研究甲壳虫的英国昆虫学家,而母亲Margaret Clark则是一名教师。

除此之外,他的高曾祖父George Boole还是著名的逻辑学家,也是现代计算科学的基础布尔代数的发明人,而他的叔叔Colin Clark则是一个著名的经济学家。

如此看来,Hinton家庭里的很多成员都在学术和研究方面都颇有造诣。


Hinton主要从事神经网络和机器学习的研究,在AI领域做出过许多重要贡献,其中最著名的当属他在神经网络领域所做的研究工作。

他在20世纪80年代就已经开启了反向传播算法(Back Propagation, BP算法)的研究,并将其应用于神经网络模型的训练中。这一算法被广泛应用于语音识别、图像识别和自然语言处理等领域。

除此之外,Hinton还在卷积神经网络(Convolutional Neural Networks,CNN)、深度置信网络(Deep Belief Networks,DBN)、递归神经网络(Recursive Neural Networks,RNN)、胶囊网络(Capsule Network)等领域做出了重要贡献。


2013年,Hinton加入Google,同时把机器学习相关的很多技术带进了谷歌,同时融合到谷歌的多项业务之中。

2019年3月,ACM公布了2018年度的图灵奖得主。

图灵奖大家都知道,是计算机领域的国际最高奖项,也被誉为“计算机界的诺贝尔奖”。

而Hinton则与蒙特利尔大学计算机科学教授Yoshua Bengio和Meta首席AI科学家Yann LeCun一起因为研究神经网络而获得了该年度的图灵奖,以表彰他们在对应领域所做的杰出贡献。

除此之外,Hinton在他的学术生涯中发表了数百篇论文,这些论文中提出了许多重要的理论和方法,涵盖了人工智能、机器学习、神经网络、计算机视觉等多个领域。

而且他的论文被引用的次数也是惊人,这对于这些领域的研究和发展都产生了重要的影响。


除了自身在机器学习方面的造诣很高,Hinton同时也是一个优秀的老师。

Hinton带过很多大牛学生,其中不少都被像苹果、Google等这类硅谷科技巨头所挖走,在对应的公司里领导着人工智能相关领域的研究。

这其中最典型的就是Ilya Sutskever,他是Hinton的学生,同时他也是最近大名鼎鼎的OpenAI公司的联合创始人和首席科学家。

聊到这里,不得不感叹大佬们的创造力以及对这个领域所作出的贡献。

既然离开了谷歌,那也就意味着将开启一段新的旅程,也期待着大佬后续给大家带来更多精彩的故事。

好了,以上就是今天的文章内容,感谢大家的收看,我们下期见。

注:本文在GitHub开源仓库「编程之路」 https://github.com/rd2coding/Road2Coding 中已经收录,里面有我整理的6大编程方向(岗位)的自学路线+知识点大梳理、面试考点、我的简历、几本硬核pdf笔记,以及程序员生活和感悟,欢迎star。

评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值