深层神经网络与浅层神经网络的区别

熟悉神经网络的可能知道,Hornik在1989年,就证明了一个定理:

  • 只需一个包含足够多神经元的隐层,多层前馈神经网络就能以任意精度逼近任意复杂的连续函数

那大家可能就会有疑问:既然一个隐层就够了,我们为什么还需要多层神经网络呢?

我们可以从这个定理中找到可能思考方式:

  • (1)足够多神经元,你在实践中能保证么?
  • (2)如果你要拟合的模型并不是连续函数,单个隐层够吗?

显然,这两个问题的回答都是否定的。

如果觉得我这个解释过于粗糙,可以看Andrew Ng在新课程”Deep Learning”中的解释。

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

下面这个图,我们也能看到:

  • 第一层,提取低层次的简单特征(边缘特征)
  • 第二层,将简单特征组合成复杂一点的特征(器官)
  • 第三层,将第二层的特征组合起来

这里写图片描述

Andrew Ng还提到,神经科学家们觉得,人的打到也是先探测简单的东西,然后组合起来才能看到整体。

  • 6
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
深层神经网络相比于神经网络具有更强的表达能力和学习能力,这一点可以通过以下理论证明来支持: 1. 逼近定理(Approximation Theorem):深层神经网络可以以任意精度逼近任意连续函数。这意味着,通过增加网络的深度,我们可以更好地拟合复杂的非线性函数关系。 2. 堆叠表示(Hierarchical Representation):深层神经网络可以通过逐层学习特征表示,从而构建出更加抽象和高级的特征表示。每一层都可以将前一层的输出作为输入,并进一步提取更高级别的特征。这种层次化的表示能力使得深层神经网络能够更好地捕捉数据中的复杂结构和模式。 3. 梯度传播(Gradient Propagation):深层神经网络使用反向传播算法来进行训练,通过计算损失函数对网络参数的梯度并将其传播回网络中,从而更新参数。在深层网络中,梯度可以更好地传播到较早的层,使得整个网络能够更好地进行参数更新和学习。 4. 参数共享(Parameter Sharing):深层神经网络中的参数共享可以减少网络的参数量,提高模型的泛化能力。通过共享参数,网络可以更好地利用数据中的统计信息,从而提高模型的效率和性能。 5. 迁移学习(Transfer Learning):深层神经网络可以通过预训练在大规模数据集上的模型,将学到的特征迁移到新的任务上。这种迁移学习的能力使得深层神经网络在数据较少的情况下也能取得较好的性能。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值