转置,置换和向量空间R-线性代数课时5(MIT Linear Algebra , Gilbert Strang)

         这是Strang教授的第五讲,讲解的内容主要关于矩阵的转置、置换矩阵和开始介绍向量空间的相关内容。

置换矩阵(Permutation Matrices)

        置换矩阵是用来进行矩阵行变换的矩阵,教授前面几讲在讲解消元的时候有一个隐含的假设:A的行排列完美,消元过程中不需要交换。而实际应用中大部分情况下A并不是这样完美的矩阵,消元过程中会发现某个主元位置为0了,需要将下方的行和求取当前主元位置的行进行交换之后再继续消元。这种情况发生时置换矩阵就派上用场了。那么什么样的矩阵是置换矩阵呢?书中给出的定义:

        A permutation matrix P has the rows of identity I in any order.

        举例说明,下面列出所有3x3的置换矩阵:

        \begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix} \begin{bmatrix} & 1 & \\ 1& & \\ & & 1 \end{bmatrix} \begin{bmatrix} & 1 & \\ & &1 \\ 1 & & \end{bmatrix} \begin{bmatrix} & &1 \\ & 1 & \\ 1& & \end{bmatrix} \begin{bmatrix} 1 & & \\ & &1 \\ & 1 & \end{bmatrix} \begin{bmatrix} & & 1\\ 1& & \\ & 1 & \end{bmatrix}

       所有的3x3的置换矩阵一共有6个,这源于置换矩阵的一个性质:n阶矩阵的置换矩阵一共有n!个,包含单位阵。置换矩阵还有以下一些特殊的性质:

       1. 置换矩阵相乘仍然是置换矩阵;

       2. 所有的置换矩阵可逆且:P^{-1}=P^{T}

        有了置换矩阵之后,前面的A=LU 就可以改写成PA=LU,这并不会给我解方程组引来更多的麻烦。

矩阵转置

        矩阵的转置线性代数里最基础的概念之一,在前面的几章里也已经用到过,只是没有指出矩阵转置的定义,矩阵的转置一般用上标T表示,在matlab中用“'”表示,下面的例子给出了矩阵转置的一切:

        \begin{bmatrix} 1 &3 \\ 2 &3 \\ 4 &1 \end{bmatrix}^{T}=\begin{bmatrix} 1 &2 &4 \\ 3& 3 &1 \end{bmatrix}

       转置用大白话说就是交换行和列,转置的显示公式:(A^{T})_{ij}=A_{ji}.转置计算满足下面几个基本公式:

        1. (A+B)^{T}=A^{T}+B^{T}.

        2. (AB)^{T}=B^{T}A^{T}.

        3. (A^{-1})^{T}=(A^{T})^{-1}.

        转置的基本概念没有更多可讲的,就这么简单,下面说说由转置概念引出的一类重要的矩阵:对称矩阵(Symmetric Matrix). 对称矩阵是具有如下性质的一类矩阵,定义:

        A symmetric matrix has A^{T}=A.

       对称矩阵是线性代数中非常重要的一类矩阵,而且它很常见,我们可以用任意矩阵构R造一个对称矩阵,很多应用中也是这样做的,像下面这样:

       R^{T}R是一个对称矩阵,因为(R^{T}R)^{T}=R^{T}R.

       对称矩阵带来的一个重要应用是,如果在矩阵消元中,如果A=A^{T},那么A=LDU 可以改写成 A=LDL^{T}.

向量空间

        向量空间学习线性代数又一个重要的阶段。那么什么是向量空间?什么又是向量子空间?为什么需要向量空间,向量空间揭示了什么?

        我们通过前面的学习,可以通过消元法求解Ax=b,你能从一个高的层面解释它背后的数学原理吗?这正是向量空间可以帮我们完成的事情,我们抛弃数字、单个的向量,从向量空间的角度来理解Ax=b的数学本质,这是回答上面三个问题的第三个。

       那么我们怎么回答什么是向量空间这个问题呢?抛出抽象的概念往往对初学者是一件很头疼的事情,那么我们先忘记它,我们从最重要的一类向量空间入手:

        R^{1},R^{2},R^{3}...是最重要的一类向量空间,定义:向量空间R^{n}包含所有由n个实数标量构成的向量。以R^{2}为例:

        e.x. R^{2}是二维实数向量空间:\begin{bmatrix} 3\\ 2 \end{bmatrix}, \begin{bmatrix} 0\\ 0 \end{bmatrix}, \begin{bmatrix} \pi\\ e \end{bmatrix}, ...都是R^{2}中的向量,R^{2}==xy平面。

        这里定义和向量的子空间一起给出,因为向量空间是它自身的子空间,所以向量子空间的定义同样适合向量空间。那么什么是向量子空间呢?给出书本上的定义:

        A  subspace of a vector space is a set of vectors that satisfies two requirements: If v and w are vectors in the subspace and c is scalar,then:

         (1) v+w is in the subspace 

         (2) cv is in the subspace 

        上面的英文定义我并没有翻译,说简单点就是向量空间(向量子空间)对加法和数乘封闭,也可以说向量空间的向量的线性组合依然存在于向量空间中,要判断一个空间是不是向量空间或向量子空间就要看它是否对加法和数乘封闭。上面说了R^{2}是二维实数向量空间,那么我们看看它的子空间有哪些:

  •          R^{2}自身
  •          过(0,0)的任意直线
  •          (0,0)

        我们再看看R^{3}的向量子空间有哪些:

  •          R^{3}自身
  •         过(0,0,0)的任意平面
  •         过(0,0,0)的任意直线
  •         (0,0,0)

        向量空间的概念可以扩展到非向量,书中给出了8条运算基本性质,它们说明了向量空间的所有内容:

         1.x+y=y+x

         2.x+(y+z)=(x+y)+z

         3.There is a unique "zero vector" such that x+0=x for all x

         4.For each x there is a unique vector -x such that x+(-x)=0

         5. 1 times x equals x

         6. (c_{1}c_{2})x=c_{1}(c_{2}x)

         7.c(x+y)=cx+cy

         8.(c_{1}+c_{2})x=c_{1}x+c_{2}x.

        只要空间里的元素运算满足上面的性质就可以套用向量空间的概念,只是它里面的元素可能不是真的向量,比如比如实函数空间F:包含所有的实函数f(x)

        向量空间和向量子空间是线性代数中十分重要的一个概念,本节课的重点也是向量空间,想做图像处理、做算法的朋友一定要掌握。

         内容置换矩阵和转置对应《INTRODUCTION TO LINEAR ALGEBRA》2.7章节,向量空间的概念对应3.1章节前部分内容。

下节课:列空间和零空间-线性代数课时6(MIT Linear Algebra , Gilbert Strang)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值