题目
473. 火柴拼正方形
你将得到一个整数数组 matchsticks ,其中 matchsticks[i] 是第 i 个火柴棒的长度。你要用 所有的火柴棍 拼成一个正方形。你 不能折断 任何一根火柴棒,但你可以把它们连在一起,而且每根火柴棒必须 使用一次 。
如果你能使这个正方形,则返回 true ,否则返回 false 。
示例 1:
输入: matchsticks = [1,1,2,2,2]
输出: true
解释: 能拼成一个边长为2的正方形,每边两根火柴。
示例 2:
输入: matchsticks = [3,3,3,3,4]
输出: false
解释: 不能用所有火柴拼成一个正方形。
提示:
1 <= matchsticks.length <= 15
1 <= matchsticks[i] <= 108
解法
方法1:回溯
boolean[] vis;
int[] matchsticks;
int maxLen;
int n;
public boolean makesquare(int[] matchsticks) {
n = matchsticks.length;
int sum = 0;
for (int x : matchsticks) sum += x;
if (sum % 4 != 0) return false;
maxLen = sum / 4;//正方形边长
vis = new boolean[n];//每个火柴的访问情况
this.matchsticks = matchsticks;
return dfs(0, 0, 0);
}
//squareIndex:当前处理到的边的编号,从0~3 index:当前处理的matchsticks的哪根火柴,curLen 当前这条边所积累的边长
public boolean dfs(int squareIndex, int index, int curLen) {
if (squareIndex == 4) return true;
if (curLen == maxLen) {
return dfs(squareIndex + 1, 0, 0);
}
//遍历每一根火柴
for (int i = index; i < n; i++) {
//当前的火车没有被使用过且当前的边长+即将被使用的火柴的长度,不会越界,这根火柴可以被使用
if (!vis[i] && curLen + matchsticks[i] <= maxLen) {
vis[i] = true;//标记
//如果当前的火柴可以使用,那就进入到下一根火车
if (dfs(squareIndex, i + 1, curLen + matchsticks[i])) {
return true;
}
vis[i] = false;//回溯
}
}
return false;
}
- 另,逆序排序写法
int n;
int[] matchsticks;
int maxLen;
public boolean makesquare(int[] matchsticks) {
n = matchsticks.length;
int sum = 0;
for (int x : matchsticks) sum += x;
if (sum % 4 != 0) return false;
this.matchsticks = matchsticks;
maxLen = sum / 4;//正方形边长
int[] sides = new int[4];//4条边的长度
//逆序排序,不排序会超时
this.matchsticks = IntStream.of(matchsticks) // 变为 IntStream
.boxed() // 装盒变为 Stream<Integer>
.sorted(Comparator.reverseOrder()) // 按自然序相反排序
.mapToInt(Integer::intValue) // 变为 IntStream
.toArray(); // 又变回 int[]
return dfs(0, sides);
}
public boolean dfs(int index, int[] sides) {
if (index == matchsticks.length) {
return true;
}
for (int i = 0; i < sides.length; i++) {
sides[i] += matchsticks[index];
if (sides[i] <= maxLen && dfs(index + 1, sides)) {
return true;
}
sides[i] -= matchsticks[index];
}
return false;
}
- 另
int n;
int[] matchsticks;
int maxLen;
public boolean makesquare(int[] matchsticks) {
n = matchsticks.length;
int sum = 0;
for (int x : matchsticks) sum += x;
if (sum % 4 != 0) return false;
this.matchsticks = matchsticks;
maxLen = sum / 4;//正方形边长
int[] sides = new int[4];//4条边的长度
//逆序排序,不排序会超时
this.matchsticks = IntStream.of(matchsticks) // 变为 IntStream
.boxed() // 装盒变为 Stream<Integer>
.sorted(Comparator.reverseOrder()) // 按自然序相反排序
.mapToInt(Integer::intValue) // 变为 IntStream
.toArray(); // 又变回 int[]
return dfs(0, sides);
}
private boolean dfs(int index, int[] sides) {
if (index >= matchsticks.length) {
if (sides[0] == maxLen && sides[1] == maxLen && sides[2] == maxLen) {
return true;
}
}
for (int i = 0; i < sides.length; i++) {
if (sides[i] + matchsticks[index] > maxLen) {
continue;
}
sides[i] += matchsticks[index];
if (dfs(index + 1, sides)) {
return true;
}
sides[i] -= matchsticks[index];
}
return false;
}
方法2:动态规划+状态压缩
思路来自官解
public boolean makesquare(int[] matchsticks) {
int totalLen = Arrays.stream(matchsticks).sum();
if (totalLen % 4 != 0) {
return false;
}
int len = totalLen / 4, n = matchsticks.length;
int[] dp = new int[1 << n];
Arrays.fill(dp, -1);
dp[0] = 0;
for (int s = 1; s < (1 << n); s++) {
for (int k = 0; k < n; k++) {
if ((s & (1 << k)) == 0) {
continue;
}
int s1 = s & ~(1 << k);
if (dp[s1] >= 0 && dp[s1] + matchsticks[k] <= len) {
dp[s] = (dp[s1] + matchsticks[k]) % len;
break;
}
}
}
return dp[(1 << n) - 1] == 0;
}