移动网络语义数据应用与未来展望
1. 研究成果总结
基于开放移动网络(OpenMobileNetwork)地理映射模型的服务依赖于坚实且准确的网络拓扑数据集。在对数据质量进行分析后,我们分别对语义跟踪(Semantic Tracking)和语义地理编码(Semantic Geocoding)进行了深入的准确性评估,以分析所提出服务的适用性。
1.1 语义跟踪功能评估
语义跟踪功能的准确性通过计算跟踪方在收到进入或离开事件通知时被跟踪用户的当前位置与位置实体在本地上下文数据(LCD)中的位置之间的距离来评估。经过多次评估测试,结果表明我们的语义跟踪方法具有竞争力。在网络覆盖密集的区域(如城市),语义丰富的移动和WiFi网络拓扑数据与地理相关数据集的链接可以作为传统地理围栏方法的良好替代方案。此外,我们还为农村地区提出了将语义地理围栏与网络拓扑相结合的混合解决方案。
1.2 语义地理编码功能评估
语义地理编码功能的性能是在处理模糊或不完整地址输入数据时与竞争对手进行比较。对于完整且唯一的地址信息,移动网络小区数据似乎对地理编码输出没有影响;但对于模糊地址数据,网络拓扑数据的积极作用明显,在使用部分地址或仅街道名称进行地理编码查询时,其性能优于竞争对手。
2. 研究结果讨论
我们认为将移动和WiFi网络数据与语义技术以及各种上下文源融合是一种独特的方法,目前尚未得到全面考虑,但为电信运营商成为服务推动者提供了巨大潜力。
2.1 开放移动网络平台的价值
开放移动网络作为概念验证平台,凸显了在各种应用领域应用语义丰富的网络拓扑数据的灵活性,并展示了语义数据表示的附加价值。它支持复杂的语义查询,这些查询不仅依赖于网络参数、地理围栏或地理坐标,还依赖于移动网络小区、WiFi接入点和外部数据源(如兴趣点POIs)之间的语义关系。此外,统一的资源描述框架(RDF)数据格式便于新上下文数据源的互连,以及为潜在的上下文感知服务开发者检索数据。
2.2 众包链接数据的作用
众包链接数据(Linked Crowdsourced Data)为开放移动网络的数据集提供了必要的上下文数据丰富性,以实现细粒度和语义丰富的位置分析服务。它将地理相关数据集从静态性质提升到能够发布与位置相关的动态上下文信息,为电信运营商如何以链接数据格式建模第三方上下文信息提供了蓝图。
2.3 研究假设的验证
评估结果验证了我们最初的假设,即移动网络运营商能够利用语义丰富的网络拓扑数据提供创新服务,这些服务可能使他们与其他服务提供商区分开来,或者在某些方面优于竞争对手的服务。如果使用真实准确的网络拓扑数据并进行专业可扩展的应用开发,这种验证将更加有力。
2.4 数据贡献与局限性
从数据网络的角度来看,开放移动网络和众包链接数据的数据集是对链接开放数据(LOD)社区的有价值贡献,其内容在LOD云之前是不可用的。这些数据集可以独立使用,且不受任何研究项目的限制,任何人都可以通过众包方式不断扩展它们。然而,目前开放移动网络本体和上下文数据云本体的表达能力有限,因为我们主要专注于提供语义丰富的网络拓扑数据并将其与LOD云中的异构数据源互连。为了进一步扩展语义技术在移动网络数据中的应用价值,需要在本体中集成更多的表达能力和语义,以便使用强大的推理工具生成隐式知识。此外,由于许可问题、缺乏数据质量控制机制和服务级别协议,将链接开放数据用于商业目的仍然是一个有待解决的问题。
3. 未来研究方向
在研究过程中,我们确定了几个可能扩展研究的领域,包括向开放移动网络添加更多语义信息、构建基于开放移动网络的位置分析框架以及在LOD云中进行上下文数据发现。
3.1 添加更多语义信息
 目前的工作主要从拓扑角度对移动和WiFi网络数据进行语义建模,为在数据之上实现语义丰富的服务奠定了基础。然而,有潜力向开放移动网络集成更多的语义信息,从而扩展相应本体的表达能力。具体方法如下:
 
 -
 
  区域名称与网络小区互连
 
 :将地区、城市和国家名称(例如来自DBpedia或GeoNames)与网络小区互连,以优化SPARQL请求。避免使用
 
  bif:st_distance
 
 函数搜索位置,这样可以提高检索过程的性能,并简化查询的制定。例如,只需查询“覆盖德国柏林舍讷贝格区的所有小区”。
 
 -
 
  定义区域本体
 
 :定义一个额外的开放移动网络区域本体,描述特定区域的信息。该本体可以包含静态社会信息,如柏林的某个区以土耳其和阿拉伯社区而闻名。基于强大的推理器,它可以通过推断生成隐式知识,例如土耳其和阿拉伯人大多是穆斯林,主要食用清真食品,这意味着不允许食用猪肉。此外,通过基于众包链接数据进行长期位置分析,可以将该地区的动态变化(如越来越多人倾向于听摇滚音乐)自动集成到本体及其相应的数据集中。如果将这些信息附加到覆盖该地区的移动网络小区和WiFi接入点上,就可以提供考虑到此类信息的复杂语义位置分析服务。
 
 -
 
  用于地理围栏
 
 :开放移动网络区域本体还可用于地理围栏。在城市等网络覆盖密集的区域,我们的语义跟踪服务效果良好;但在农村地区,由于小区覆盖面积大且WiFi接入点分布较少,网络拓扑不足以替代细粒度的地理围栏。因此,我们为农村地区提出了将语义丰富的地理围栏与网络拓扑相结合的混合解决方案。上下文数据云本体的位置方面已经表示了为位置实体自动创建的圆形地理围栏,通过定义
 
  cdc-owl:radius
 
 谓词来描述其地面面积(以米为单位)。还可以使用
 
  ogc:asWKT
 
 和
 
  sf:LineString
 
 属性创建更复杂的多边形地理围栏模型。这两种类型的语义地理围栏都可以与开放移动网络区域本体描述的信息相关联。
下面是一个简单的mermaid流程图,展示向开放移动网络添加语义信息的步骤:
graph LR
    A[确定区域名称数据源] --> B[与网络小区互连]
    B --> C[优化SPARQL请求]
    D[定义区域本体] --> E[集成静态社会信息]
    E --> F[生成隐式知识]
    F --> G[集成动态变化信息]
    H[创建地理围栏模型] --> I[关联区域本体信息]
4. 位置分析框架
之前展示了位置分析地图,它在地图上可视化聚合和初步分析的本地上下文数据(LCD)。我们提议通过构建基于开放移动网络的位置分析框架来扩展这项工作,该框架为移动网络运营商提供了明确定义的接口和可视化选项,使其能够向第三方开发者和企业主提供各种位置分析信息。
4.1 框架的数据关联
该框架需要通过关联多个数据源来洞察不同移动网络区域内的活动。在处理好隐私问题的前提下,开放移动网络的原始网络测量数据已经可以推断用户的移动和静止阶段。为此,可以利用复杂的数据挖掘工具(如Weka)结合语义轨迹建模概念,来推导用户移动并将这些数据与开放移动网络的网络拓扑信息、众包链接数据以及其他外部数据源中的上下文信息相关联。此外,上下文数据云本体的用户配置文件方面定义的语义用户配置文件(如偏好、人口统计信息或喜爱的位置)也可以集成到关联过程中。
4.2 框架的作用
这些数据源的融合将使位置分析框架能够识别出现的趋势,并为企业主提供有价值的信息,例如统计经过其餐厅的素食者数量。
 以下是位置分析框架的数据关联流程表格:
 
 | 步骤 | 操作 | 工具/数据 |
 
 | ---- | ---- | ---- |
 
 | 1 | 处理原始网络测量数据 | 开放移动网络原始数据 |
 
 | 2 | 推导用户移动 | Weka、语义轨迹建模概念 |
 
 | 3 | 关联网络拓扑信息 | 开放移动网络拓扑数据 |
 
 | 4 | 关联上下文信息 | 众包链接数据、外部数据源 |
 
 | 5 | 集成用户配置文件 | 上下文数据云本体用户配置文件 |
通过以上内容,我们可以看到开放移动网络在语义数据应用和位置分析方面的巨大潜力,以及未来进一步研究和发展的方向。后续还将探讨在LOD云中进行上下文数据发现的相关内容。
移动网络语义数据应用与未来展望
5. LOD云中的上下文数据发现
在之前的研究中,我们展示了LOD云作为有价值的第三方上下文源的潜力,并将多个数据集与开放移动网络互连,为各种上下文感知服务奠定了基础。然而,从LOD云中获取更多上下文数据来丰富服务需要大量的手动工作,包括寻找合适的数据集、相应的SPARQL端点以及理解其背后的模式,这既耗时又不适合为网络运营商开发新服务。因此,数据集和上下文信息的发现是处理LOD云时的关键因素。
5.1 上下文数据查找服务
为了解决这个问题,我们提出了一个上下文数据查找服务,它是本研究的主要未来展望。该服务由新的上下文元本体(CMO)和上下文元本体目录(CMOD)组成,用于在LOD云中实现上下文数据的发现。
- 
  
   上下文元本体(CMO)
  
  :灵感来自VoID,CMO为数据集中包含的相关上下文信息提供元描述。每个数据集所有者需要用信息填充CMO,以便其数据集能在上下文数据查找服务中可用。CMO基于RDFS和OWL,命名空间为
  
http://www.contextdatacloud.org/cmo/ontology/,前缀为cmo,资源用http://www.contextdatacloud.org/cmo/resource/表示,前缀为cmor。应用该本体到特定数据集时,建议使用标准化命名空间http://URI/cmo/。- 
    
     SPARQL端点关联
    
    :为了实现上下信息的搜索和可发现性,
    
cmo:hasSparqlEndpointAddress谓词将cmo:Dataset与相应SPARQL端点的URI关联起来。 - 
    
     上下文分类
    
    :本体根据之前的研究对上下文进行高级分类,这些类别表示为预定义的
    
cmo:ContextFacets,如cmo:LocationContextFacet、cmo:WeatherContextFacet或cmo:EnvironmentalContextFacet,可以根据需要轻松扩展。 - 
    
     数据分区
    
    :由于数据集可能包含多个上下文方面的信息,数据集可以划分为多个
    
cmo:Containers,每个容器持有不同的上下文信息,通过cmo:containsInformation指定。对于每个cmo:Container,使用上述上下文类别指定上下文信息的类型。 - 
    
     主要概念和谓词
    
    :CMO通过
    
cmo:MajorConcept和cmo:MajorPredicate概念纳入了数据集中最常用的属性和类的信息,这对上下文感知服务开发者了解数据集内容和主要使用的概念很有帮助。cmo:MajorPredicate通过cmo:refersTo指向数据集中流行谓词的URI,并根据其权重(通过计数计算)进行排名;cmo:MajorConcept表示和排名流行类。由于LOD云中的本体概念并不总是自解释的,需要将流行概念映射到提供的cmo:ContextFacets,以实现给定上下文的本体概念发现。在CMO的第一个版本中,假设数据集所有者手动对其概念进行分类,虽然耗时但准确性高,并考虑了概念的含义。此外,CMO仅支持主要概念到上下文方面的映射,不考虑模式关系。未来,应根据相关的模式近似技术将相关模式部分也分类到上下文方面,以方便开发者使用。 - 
    
     有效性约束
    
    :为了指定数据集中上下文信息的有效性,使用
    
cmo:Validity概念,它为特定的cmo:ContextFacet增加有效性约束。区分本地(cmo:LocationConstraint)和时间(cmo:TimeConstraint)有效性。- 
      
cmo:LocationConstraint允许根据特定位置过滤数据。例如,开放移动网络的数据集提供与特定位置绑定的移动和WiFi网络拓扑信息,使用WGS84坐标表示。由于该数据集并非涵盖世界所有地区,设置cmo:LocationConstraint来指定其在位置方面的有限适用性。可以设置两种类型的cmo:LocationConstraints:一种是区域的文本表示(如城市或城市的一个区),其区域用地理空间数据(如georss:box)描述;另一种是使用OGC GeoSPARQL词汇表独立于文本表示描述地理空间区域(如sf:LineString)。 - 
      
cmo:TimeConstraint根据时间约束过滤数据,例如仅使用最新的传感器数据。该约束基于数据集中使用xsd:dateTime的时间描述,时间适用性定义为一个区间(cmo:TimeInterval),特定时间点必须包含在该区间内才有效或适用。有效性约束可以组合使用,例如定义特定区域且在特定时间区间内可用的数据。 
 - 
      
 
 - 
    
     SPARQL端点关联
    
    :为了实现上下信息的搜索和可发现性,
    
 
 下面是CMO的主要组成部分列表:
 
 - 元描述提供:为数据集中的上下文信息提供元描述
 
 - SPARQL端点关联:将数据集与SPARQL端点关联
 
 - 上下文分类:对上下文进行高级分类
 
 - 数据分区:将数据集划分为多个容器
 
 - 主要概念和谓词:纳入数据集中流行的概念和谓词信息
 
 - 有效性约束:指定上下文信息的有效性
5.2 上下文元本体目录(CMOD)
 CMOD是一个中央存储库,跟踪所有CMO,是上下文感知服务开发者搜索上下文数据的第一个入口点。我们提出了两种CMOD与CMO交互的架构方案:
 
 -
 
  集中式CMO存储库
 
 :基于CMO模式的单一三元组存储,维护所有数据集的元描述。这种架构对CMOD提供者来说更容易维护,但数据集所有者需要将其元描述上传到这个中央存储库,这使得后续对CMO的更新和更改更加困难,并且数据集所有者会“失去”对其元描述的控制,这是不可取的。
 
 -
 
  分布式CMO架构
 
 :允许数据集所有者将其CMO保留在自己的服务器上,CMOD仅维护与CMO的链接并控制其可用性。
 以下是两种架构的对比表格:
 
 | 架构类型 | 优点 | 缺点 |
 
 | ---- | ---- | ---- |
 
 | 集中式CMO存储库 | 易于维护 | 数据集所有者更新困难,失去控制 |
 
 | 分布式CMO架构 | 数据集所有者保留控制权 | CMOD维护链接 |
6. 总结与展望
通过对移动和WiFi网络数据进行语义建模和丰富,我们展示了开放移动网络在提供创新服务方面的巨大潜力。语义跟踪和语义地理编码功能的评估结果验证了语义丰富的网络拓扑数据在不同场景下的有效性。开放移动网络平台和众包链接数据为LOD社区做出了有价值的贡献,但也面临着本体表达能力有限和商业应用方面的挑战。
未来的研究方向包括向开放移动网络添加更多语义信息、构建位置分析框架以及在LOD云中进行上下文数据发现。这些扩展将进一步提升语义技术在移动网络数据中的应用价值,为移动网络运营商提供更多的服务创新机会,同时也为第三方开发者和企业主提供更有价值的位置分析信息。随着这些研究的深入和发展,我们有望看到移动网络在语义数据应用方面取得更大的突破,为智能城市、物联网等领域的发展提供更强大的支持。
下面是整个研究的主要内容和未来方向的mermaid流程图:
graph LR
    A[移动和WiFi网络数据语义建模] --> B[语义跟踪和地理编码评估]
    B --> C[开放移动网络平台价值]
    C --> D[众包链接数据作用]
    D --> E[研究假设验证]
    E --> F[数据贡献与局限性]
    F --> G[未来研究方向]
    G --> H[添加语义信息]
    G --> I[构建位置分析框架]
    G --> J[上下文数据发现]
综上所述,移动网络语义数据的应用和研究是一个充满潜力和挑战的领域,未来的工作将围绕进一步挖掘数据价值、提升服务能力和解决应用难题等方面展开,为推动移动网络技术的发展和应用做出更大的贡献。
                      
                          
                        
                            
                            
                          
                          
                            
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					778
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            