卡尔曼滤波相关技术解析
1. 卡尔曼滤波估计偏差与协方差分析
在卡尔曼滤波中,有如下重要公式:
[E \left[ \frac{\tilde{x} S^{(+)} {k - 1}}{x_{S_{k - 1}}} \right] = B E \left[ \frac{\tilde{x} S^{(-)} {k - 1}}{x_{S_{k - 1}}} \right]]
显然,如果 (E[\tilde{x}_k^S(+)] = 0),那么估计会产生偏差。当满足 (F_F = F_S) 且 (E(x_S) = 0) 时(例如,(x_S) 可能是确定性变量,使得 (E(x_S) = x_S = 0);或者 (x_S) 是具有非零均值的随机变量),这种情况较为常见。
对协方差传播方程进行分析:
[E_{cov} = A(P_{cov})A^T + cov_L]
[P_{cov} = B(E_{cov})B^T + cov_P]
可以发现,(cov[\tilde{x}_k^S(2)]) 取决于 (cov(x_k^S))。若 (F_F = F_S) 且 (cov(x_S) = 0),这在次优滤波器中经常出现,此时估计 (\hat{x}) 是无偏的,并且估计误差协方差与系统状态无关。
2. 施密特 - 卡尔曼滤波
2.1 历史背景
斯坦利·F·施密特是早期成功推广卡尔曼滤波的倡导者。1959 年,卡尔曼在加利福尼亚州山景城的美国国家航空航天局艾姆斯实验室展示其研究成果时,施密特正在该实验室工作。他立即将卡尔曼滤波应用于当时艾姆斯实验室正在研究的问题,即即将开
超级会员免费看
订阅专栏 解锁全文
1582

被折叠的 条评论
为什么被折叠?



