24、卡尔曼滤波相关技术解析

卡尔曼滤波相关技术解析

1. 卡尔曼滤波估计偏差与协方差分析

在卡尔曼滤波中,有如下重要公式:
[E \left[ \frac{\tilde{x} S^{(+)} {k - 1}}{x_{S_{k - 1}}} \right] = B E \left[ \frac{\tilde{x} S^{(-)} {k - 1}}{x_{S_{k - 1}}} \right]]
显然,如果 (E[\tilde{x}_k^S(+)] = 0),那么估计会产生偏差。当满足 (F_F = F_S) 且 (E(x_S) = 0) 时(例如,(x_S) 可能是确定性变量,使得 (E(x_S) = x_S = 0);或者 (x_S) 是具有非零均值的随机变量),这种情况较为常见。

对协方差传播方程进行分析:
[E_{cov} = A(P_{cov})A^T + cov_L]
[P_{cov} = B(E_{cov})B^T + cov_P]
可以发现,(cov[\tilde{x}_k^S(2)]) 取决于 (cov(x_k^S))。若 (F_F = F_S) 且 (cov(x_S) = 0),这在次优滤波器中经常出现,此时估计 (\hat{x}) 是无偏的,并且估计误差协方差与系统状态无关。

2. 施密特 - 卡尔曼滤波
2.1 历史背景

斯坦利·F·施密特是早期成功推广卡尔曼滤波的倡导者。1959 年,卡尔曼在加利福尼亚州山景城的美国国家航空航天局艾姆斯实验室展示其研究成果时,施密特正在该实验室工作。他立即将卡尔曼滤波应用于当时艾姆斯实验室正在研究的问题,即即将开

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值